Stretch and Diameter in Random Geometric Graphs

被引:0
作者
Ghurumuruhan Ganesan
机构
[1] New York University,
来源
Algorithmica | 2018年 / 80卷
关键词
Random geometric graphs; Diameter; Stretch property; Primary: 60J10; 60K35; Secondary: 60C05; 62E10; 90B15; 91D30;
D O I
暂无
中图分类号
学科分类号
摘要
Consider the random geometric graph G=G(n,rn,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = G(n,r_n,f)$$\end{document} consisting of n nodes independently distributed in S=-12,122\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S = \left[ -\frac{1}{2},\frac{1}{2}\right] ^2$$\end{document} each according to a density f(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f({\cdot })$$\end{document}. Two nodes u and v are joined by an edge if the Euclidean distance between them is less than rn.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_n.$$\end{document} Let CG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_G$$\end{document} denote the component of G containing the largest number of nodes and denote diam(CG)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {diam}(C_G)$$\end{document} to be its diameter. Let s and t be the nodes of G closest to -12,12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( -\frac{1}{2},\frac{1}{2}\right) $$\end{document} and 12,12,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \frac{1}{2},\frac{1}{2}\right) ,$$\end{document} respectively and let dG(s,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_G(s,t)$$\end{document} denote their graph distance. We prove that the normalized diameter rn2diam(CG)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{r_n}{\sqrt{2}} \text {diam}(C_G)$$\end{document} and the stretch rndG(s,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_nd_G(s,t)$$\end{document} both converge to one in probability if nrn2→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$nr_n^2 \rightarrow \infty $$\end{document} as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \rightarrow \infty $$\end{document}.
引用
收藏
页码:300 / 330
页数:30
相关论文
共 9 条
  • [1] Durrett R(1984)Oriented percolation in two dimensions Ann. Probab. 12 999-1040
  • [2] Ellis RB(2007)Random geometric graph diameter in the unit ball Algorithmica 47 421-438
  • [3] Martin J(2007)Closing gap in the capacity of wireless networks via percolation theory IEEE Trans. Inform. Theory 53 1009-1018
  • [4] Yan C(2013)Size of the giant component in a random geometric graph Ann. Inst. Henri Poincare 49 1130-1140
  • [5] Franceschetti M(undefined)undefined undefined undefined undefined-undefined
  • [6] Dousse O(undefined)undefined undefined undefined undefined-undefined
  • [7] Tse DNC(undefined)undefined undefined undefined undefined-undefined
  • [8] Thiran P(undefined)undefined undefined undefined undefined-undefined
  • [9] Ganesan G(undefined)undefined undefined undefined undefined-undefined