Multiple solutions for a class of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document}-Kirchhoff type equations via variational methods

被引:0
作者
Nguyen Thanh Chung
Hoang Quoc Toan
机构
[1] Quang Binh University,Department of Mathematics
[2] Hanoi University of Science,Department of Mathematics
关键词
-Kirchhoff type equations; Multiple solutions; Variational method; 35J55; 35J65;
D O I
10.1007/s13398-014-0177-3
中图分类号
学科分类号
摘要
In this article, we consider the following N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document}-Kirchhoff type problem -M∫Ω|∇u|NdxΔNu=λf(x,u)+μg(x,u)inΩ,u=0on∂Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} -M\left( \int \limits _{\Omega }|\nabla u|^N\,dx\right) \Delta _N u = \lambda f(x,u) +\mu g(x,u) \quad \text { in } \Omega ,\\ u =0 \quad \text { on } \partial \Omega , \end{array}\right. \end{aligned}$$\end{document}where Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is a bounded smooth domain of RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N$$\end{document}, N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N \ge 2$$\end{document}, M:R0+→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M: {\mathbb {R}}^+_0 \rightarrow {\mathbb {R}}$$\end{document} is a continuous function, ΔNu=div(|∇u|N-2∇u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _Nu = {\mathrm {div}} (|\nabla u|^{N-2}\nabla u)$$\end{document}, f,g:Ω×R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f,g: \Omega \times {\mathbb {R}}\rightarrow {\mathbb {R}}$$\end{document} are two Carathéodory functions and λ,μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda , \mu $$\end{document} are positive parameters. Using variational method, we show the existence of at least three weak solutions for the problem.
引用
收藏
页码:247 / 256
页数:9
相关论文
共 22 条
[1]  
Cammaroto F(2011)Multiple solutions for a Kirchhoff-type problem involving the Nonlinear Anal. 74 1841-1852
[2]  
Vilasi L(2011)-Laplacian operator J. Differ. Equ. 250 1876-1908
[3]  
Chen CY(2013)The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions Complex Var. Elliptic Equ. 58 1637-1646
[4]  
Kuo YC(2012)Multiple solutions for a Electron. J. Qual. Theory Differ. Equ. 2012 1-13
[5]  
Wu TF(2009)-Kirchhoff-type equation with sign-changing nonlinearities J. Math. Anal. Appl. 359 275-284
[6]  
Chung NT(2010)Multiplicity results for a class of Nonlinear Anal. 72 3314-3323
[7]  
Chung NT(2014)-Kirchhoff type equations with combined nonlinearities Nonlinear Anal. (TMA) 95 607-624
[8]  
Dai G(1971)Existence of solutions for a Indiana Univ. Math. J. 20 1077-1092
[9]  
Hao R(2014)-Kirchhoff-type equation Electron. J. Differ. Equ. 2014 1-22
[10]  
Fan XL(2012)On nonlocal J. Inequal. Appl. 2012 283-1977