It is proved that, if <InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"4"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"5"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"6"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"7"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"8"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"9"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"10"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>f(x)\in L^p_{[-1,1]}$, $1< p\ki \infty$, changes sign exactly $l$ times, then there exists a real rational function $r(x)\in R_{n}^l$ such that <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[$$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation> {\|f-r\|}_{p}\le C_{p,\delta}{(l+1)}^2\omega {(f,n^{-1})}_p, $$ which generalizes a result of Leviatan and Lubinsky in \cite{4}. A weaker similar result in $L^1_{[-1,1]}$ is also established.