The study of electrochemical palladium behavior using the quartz crystal microbalance II. Basic solutions

被引:0
作者
Michał Grdeń
Jan Kotowski
Andrzej Czerwiński
机构
[1] Department of Chemistry,
[2] The University of Warsaw,undefined
[3] Pasteura 1,undefined
[4] 02-093 Warsaw,undefined
[5] Poland,undefined
[6] Industrial Chemistry Research Institute,undefined
[7] Rydygiera 8,undefined
[8] 01-793 Warsaw,undefined
[9] Poland,undefined
来源
Journal of Solid State Electrochemistry | 2000年 / 4卷
关键词
Key words Palladium; Hydrogen sorption; Surface oxides; Electrochemical quartz crystal microbalance;
D O I
暂无
中图分类号
学科分类号
摘要
The electrochemical quartz crystal microbalance (EQCMB) method has been used to evaluate the processes which occur in/on the palladium electrode in basic solutions. Hydrogen electrosorption in palladium is accompanied by an additional frequency shift that can be attributed to the stresses generated inside the Pd metal. A non-linear dependence between the mass change and the charge consumed during hydrogen oxidation in the Pd electrode has been found for hydrogen absorbed in the α- and β-phases. This effect precludes the objective estimation of the amount of hydrogen absorbed inside the Pd electrode. The EQCMB method has been used, however, for studying the surface electrode processes on the Pd electrode, i.e. specific anion adsorption, surface oxidation and dissolution. Also, the structure of the palladium oxide formed on the Pd surface during electrochemical oxidation is discussed in this paper and the effect of the anodic limiting potential on the oxide structure is reported.
引用
收藏
页码:273 / 278
页数:5
相关论文
共 50 条
[31]   Electrochemical quartz crystal microbalance studies of the formation and redox behavior of poly(neutral red) electrodes [J].
Inzelt, G ;
Csahók, E .
ELECTROANALYSIS, 1999, 11 (10-11) :744-748
[32]   Stable mercury films on gold for the electrochemical quartz crystal microbalance [J].
Cho, KC ;
Yoon, S ;
Jung, MC ;
Kim, H .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 1998, 134 (1-2) :59-65
[33]   Electrochemical behavior of thin polycrystalline rhodium layers studied by cyclic voltammetry and quartz crystal microbalance [J].
Lukaszewski, M. ;
Siwek, H. ;
Czerwinski, A. .
ELECTROCHIMICA ACTA, 2007, 52 (13) :4560-4565
[34]   INVESTIGATION OF ELECTROSORPTION OF A QUATERNARY AMMONIUM SALT USING AN ELECTROCHEMICAL QUARTZ-CRYSTAL MICROBALANCE [J].
KOUZNETSOV, D ;
SUGIER, A ;
ROPITAL, F ;
FIAUD, C .
ELECTROCHIMICA ACTA, 1995, 40 (10) :1513-1521
[35]   Electrochemical quartz crystal microbalance study on cyclic electrodeposition of PbS thin-films [J].
Saloniemi, H ;
Kemell, M ;
Ritala, M ;
Leskelä, M .
THIN SOLID FILMS, 2001, 386 (01) :32-40
[36]   Study of bismuth sulphide films in Ni2+ containing solution using electrochemical quartz crystal microbalance [J].
Naruskevicius, L. ;
Simkunaite-Stanyniene, B. ;
Valiuliene, G. ;
Zieliene, A. ;
Tamasauskaite-Tamasiunaite, L. ;
Sudavicius, A. .
TRANSACTIONS OF THE INSTITUTE OF METAL FINISHING, 2009, 87 (06) :303-308
[37]   Electrochemical quartz crystal microbalance study on growth and property of the polymer deposit at gold electrodes during oxidation of dopamine in aqueous solutions [J].
Li, YL ;
Liu, ML ;
Xiang, CH ;
Xie, QJ ;
Yao, SZ .
THIN SOLID FILMS, 2006, 497 (1-2) :270-278
[38]   Investigations of nanometric films of doped polyaniline by using electrochemical surface plasmon resonance and electrochemical quartz crystal microbalance [J].
Damos, FS ;
Luz, RDS ;
Tanaka, AA ;
Kubota, LT .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2006, 589 (01) :70-81
[39]   Investigation of Gold Electrosorption onto Gold and Carbon Electrodes using an Electrochemical Quartz Crystal Microbalance [J].
Mansurov, Z. ;
Supiyeva, Zh ;
Avchukir, Kh ;
Taurbekov, A. ;
Yeleuov, M. ;
Smagulova, G. ;
Mansurova, M. ;
Biisenbayev, M. ;
Pavlenko, V .
EURASIAN CHEMICO-TECHNOLOGICAL JOURNAL, 2019, 21 (04) :283-289
[40]   Dissolution of noble metals and their alloys studied by electrochemical quartz crystal microbalance [J].
Lukaszewski, M ;
Czerwinski, A .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2006, 589 (01) :38-45