Marcinkiewicz-Zygmund inequalities in variable Lebesgue spaces

被引:0
作者
Bonich, Marcos [1 ]
Carando, Daniel [1 ,2 ]
Mazzitelli, Martin [3 ]
机构
[1] Consejo Nacl Invest Cient & Tecn, IMAS, UBA, Buenos Aires, Argentina
[2] Univ Buenos Aires, Fac Cs Exactas & Nat, Dept Matemat, Buenos Aires, Argentina
[3] Univ Nacl Cuyo, Inst Balseiro, CNEA, CONICET, San Carlos De Bariloche, Argentina
关键词
Vector-valued inequalities; Variable Lebesgue spaces; Linear operators; VECTOR-VALUED INEQUALITIES; OPERATORS; EXPONENT; HERZ;
D O I
10.1007/s43037-024-00344-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study & ell;r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell <^>r$$\end{document}-valued extensions of linear operators defined on Lebesgue spaces with variable exponent. Under some natural (and usual) conditions on the exponents, we characterize 1 <= r <=infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le r\le \infty $$\end{document} such that every bounded linear operator T:Lq(<middle dot>)(Omega 2,mu)-> Lp(<middle dot>)(Omega 1,nu)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T:L<^>{q(\cdot )}(\Omega _2, \mu )\rightarrow L<^>{p(\cdot )}(\Omega _1, \nu )$$\end{document} has a bounded & ell;r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell <^>r$$\end{document}-valued extension. We consider both non-atomic measures and measures with atoms and show the differences that can arise. We present some applications of our results to weighted norm inequalities of linear operators and vector-valued extensions of fractional operators with rough kernel.
引用
收藏
页数:22
相关论文
共 28 条
  • [1] Multilinear Marcinkiewicz-Zygmund Inequalities
    Carando, Daniel
    Mazzitelli, Martin
    Ombrosi, Sheldy
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2019, 25 (01) : 51 - 85
  • [2] Variable exponent, linear growth functionals in image restoration
    Chen, Yunmei
    Levine, Stacey
    Rao, Murali
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) : 1383 - 1406
  • [3] GEOMETRIC PROPERTIES OF BANACH SPACE VALUED BOCHNER-LEBESGUE SPACES WITH VARIABLE EXPONENT
    Cheng, Chen
    Xu, Jingshi
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2013, 7 (03): : 461 - 475
  • [4] Cruz-Uribe D, 2006, ANN ACAD SCI FENN-M, V31, P239
  • [5] Extrapolation from A∞ weights and applications
    Cruz-Uribe, D
    Martell, JM
    Pérez, C
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 213 (02) : 412 - 439
  • [6] EXTRAPOLATION AND WEIGHTED NORM INEQUALITIES IN THE VARIABLE LEBESGUE SPACES
    Cruz-Uribe, David
    Wang, Li-An Daniel
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (02) : 1205 - 1235
  • [7] Cruz-Uribe DV, 2011, OPER THEORY ADV APPL, V215, P3, DOI 10.1007/978-3-0348-0072-3
  • [8] CruzUribe DV, 2013, APPL NUMER HARMON AN, DOI 10.1007/978-3-0348-0548-3
  • [9] Defant A, 1997, STUD MATH, V125, P271
  • [10] DEFRANCIA JLR, 1983, PAC J MATH, V105, P227