Mean Convergence and Weak Laws of Large Numbers for Multidimensional Arrays of Random Elements

被引:0
作者
Vo Thi Van Anh
Nguyen Ngoc Tu
机构
[1] HCMC University of Technology and Education,Department of Applied Sciences
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2023年 / 46卷
关键词
Mean convergence; Weak law of large numbers; Banach space-valued random element; Maximum normed partial sum; 60F05; 60F25; 60B11; 60B12;
D O I
暂无
中图分类号
学科分类号
摘要
This paper establishes mean convergence theorems and weak laws of large numbers for the maximum normed partial sums from a d-dimensional array of random elements taking values in a real separable Banach space, irrespective of their joint distributions. The main results extend and improve several ones in the literature. The sharpness of the results is illustrated by three examples.
引用
收藏
相关论文
共 38 条
[1]  
Anh VTN(2021)The Marcinkiewicz–Zygmund-type strong law of large numbers with general normalizing sequences J. Theor. Probab. 34 331-348
[2]  
Hien NTT(2022)Convergence in mean for double arrays of Bull. Malays. Math. Sci. Soc. 45 1507-1520
[3]  
Thành LV(2022)-pairwise negatively dependent random variables J. Theor. Probab. 35 2068-2079
[4]  
Van VTH(1996)On a weak law of large numbers with regularly varying normalizing sequences Acta Math. Hungar. 71 327-336
[5]  
Anh VTV(1998)Extensions of the strong law of large numbers of Marcinkiewicz and Zygmund for dependent variables Publ. Math. Debr. 53 149-161
[6]  
Anh NTN(1978)Strong laws of large numbers for pairwise independent random variables with multidimensional indices Ann. Probab. 6 469-482
[7]  
Hien NTT(2004)Marcinkiewicz laws and convergence rates in the law of large numbers for random variables with multidimensional indices J. Theor. Probab. 17 769-779
[8]  
Tu NN(2019)An extension of the Kolmogorov–Feller weak law of large numbers with an application to the St. Petersburg game Appl. Math. 64 45-59
[9]  
Boukhari F(2011)On the negative dependence in Hilbert spaces with applications Stoch. Anal. Appl. 29 674-683
[10]  
Chandra TK(2020)A generalization of weak law of large numbers J. Math. Anal. Appl. 487 123-975