Application of Variational a-Posteriori Multiscale Error Estimation to Higher-Order Elements

被引:0
|
作者
Guillermo Hauke
Mohamed H. Doweidar
Daniel Fuster
Antonio Gómez
Javier Sayas
机构
[1] Centro Politécnico Superior,Departamento de Mecánica de Fluidos
[2] Centro Politécnico Superior,Departamento de Matemática Aplicada
来源
Computational Mechanics | 2006年 / 38卷
关键词
A posteriori error estimation; Advection-diffusion equation; Hyperbolic flows; Fluid mechanics; Fluid dynamics; Stabilized methods; Variational multiscale method;
D O I
暂无
中图分类号
学科分类号
摘要
An explicit a-posteriori error estimator based on the variational multiscale method is extended to higher-order elements. The technique is based on a recently derived explicit formula of the fine-scale Green’s function for higher-order elements. For the class of element-edge exact methods, the technique is able to predict the error exactly in any desired norm. It is shown that for elements of order k, the exact error depends on the k−1 derivative of the residual. The technique is applied to one-dimensional examples of fluid transport computed with stabilized methods.
引用
收藏
页码:382 / 389
页数:7
相关论文
共 50 条
  • [1] Application of variational a-posteriori multiscale error estimation to higher-order elements
    Hauke, Guillermo
    Doweidar, Mohamed H.
    Fuster, Daniel
    Gomez, Antonio
    Sayas, Javier
    COMPUTATIONAL MECHANICS, 2006, 38 (4-5) : 382 - 389
  • [2] Variational multiscale a-posteriori error estimation for multi-dimensional transport problems
    Hauke, Guillermo
    Fuster, Daniel
    Doweidar, Mohamed H.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (33-40) : 2701 - 2718
  • [3] Proper intrinsic scales for a-posteriori multiscale error estimation
    Hauke, Guillermo
    Doweidar, Mohamed H.
    Miana, Mario
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (33-36) : 3983 - 4001
  • [4] A-posteriori error estimation for second order mechanical systems
    Ruiner, Thomas
    Fehr, Joerg
    Haasdonk, Bernard
    Eberhard, Peter
    ACTA MECHANICA SINICA, 2012, 28 (03) : 854 - 862
  • [5] A-posteriori error estimation for second order mechanical systems
    Thomas Ruiner
    Jörg Fehr
    Bernard Haasdonk
    Peter Eberhard
    Acta Mechanica Sinica, 2012, 28 : 854 - 862
  • [6] A-posteriori error estimation for second order mechanical systems
    Thomas Ruiner
    Jrg Fehr
    Bernard Haasdonk
    Peter Eberhard
    Acta Mechanica Sinica, 2012, 28 (03) : 854 - 862
  • [7] Variational Multiscale A Posteriori Error Estimation for Quantities of Interest
    Hauke, Guillermo
    Fuster, Daniel
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2009, 76 (02): : 1 - 6
  • [8] Variational multiscale a posteriori error estimation for systems. Application to linear elasticity
    Hauke, Guillermo
    Irisarri, Diego
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 285 : 291 - 314
  • [9] A posteriori error estimates of higher-order finite elements for frictional contact problems
    Schroeder, Andreas
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 249 : 151 - 157
  • [10] SUPERCONVERGENCE AND A-POSTERIORI ERROR ESTIMATION FOR TRIANGULAR MIXED FINITE-ELEMENTS
    BRANDTS, JH
    NUMERISCHE MATHEMATIK, 1994, 68 (03) : 311 - 324