Microlocal Analysis of the Doppler Transform on R3

被引:0
作者
Karthik Ramaseshan
机构
[1] Department of Mathematics,
[2] Box 354350,undefined
[3] University of Washington,undefined
[4] Seattle,undefined
[5] Washington 98195,undefined
来源
Journal of Fourier Analysis and Applications | 2004年 / 10卷
关键词
Vector Field; Small Subset; Smooth Curve; Microlocal Analysis;
D O I
暂无
中图分类号
学科分类号
摘要
The Doppler transform of a vector field $F = (f_1,f_2,f_3)$ on $\mathbb{R}^3$ is defined by \[\displaystyle\mathcal{D}F(x,\omega) = \sum_j\int_\mathbb{R} \omega_j f_j(x+t\omega)\, dt~,\] where $x\in \mathbb{R}^3$ and $\omega \in S^2$ specifies the direction of a line passing through $x$. In practical applications, $\mathcal{D}F$ is known only for a small subset of lines in $\mathbb{R}^3$. In this article, we deal with the case of $\mathcal{D}F$ restricted to all lines passing through a fixed smooth curve. Using techniques from microlocal analysis, we study the problem of recovering the wavefront set of $\mbox{curl}(F)$ from that of the restricted Doppler transform of $F$.
引用
收藏
页码:73 / 82
页数:9
相关论文
empty
未找到相关数据