Maximal function characterizations for Hardy spaces associated with nonnegative self-adjoint operators on spaces of homogeneous type

被引:0
|
作者
Liang Song
Lixin Yan
机构
[1] Sun Yat-sen University,Department of Mathematics
来源
Journal of Evolution Equations | 2018年 / 18卷
关键词
Hardy space; Nonnegative self-adjoint operator; Atomic decomposition; The nontangential and radial maximal functions; Spaces of homogeneous type; Primary 42B30; Secondary 42B35; 47B38;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a metric measure space with a doubling measure and L be a nonnegative self-adjoint operator acting on L2(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(X)$$\end{document}. Assume that L generates an analytic semigroup e-tL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e^{-tL}$$\end{document} whose kernels pt(x,y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_t(x,y)$$\end{document} satisfy Gaussian upper bounds but without any assumptions on the regularity of space variables x and y. In this article, we continue a study in Song and Yan (Adv Math 287:463–484, 2016) to give an atomic decomposition for the Hardy spaces HL,maxp(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H^p_{L,\mathrm{max}}(X)$$\end{document} in terms of the nontangential maximal function associated with the heat semigroup of L, and hence, we establish characterizations of Hardy spaces associated with an operator L, via an atomic decomposition or the nontangential maximal function. We also obtain an equivalence of HL,maxp(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H^p_{L, \mathrm{max}}(X)$$\end{document} in terms of the radial maximal function.
引用
收藏
页码:221 / 243
页数:22
相关论文
共 50 条
  • [32] RADIAL MAXIMAL FUNCTION CHARACTERIZATIONS FOR HARDY SPACES ON RD-SPACES
    Grafakos, Loukas
    Liu, Liguang
    Yang, Dachun
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2009, 137 (02): : 225 - 251
  • [33] Maximal function characterizations of Hardy spaces on RD-spaces and their applications
    Grafakos, Loukas
    Liu, LiGuang
    Yang, DaChun
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (12): : 2253 - 2284
  • [34] Atomic and Molecular Decomposition of Homogeneous Spaces of Distributions Associated to Non-negative Self-Adjoint Operators
    A. G. Georgiadis
    G. Kerkyacharian
    G. Kyriazis
    P. Petrushev
    Journal of Fourier Analysis and Applications, 2019, 25 : 3259 - 3309
  • [35] Atomic and Molecular Decomposition of Homogeneous Spaces of Distributions Associated to Non-negative Self-Adjoint Operators
    Georgiadis, A. G.
    Kerkyacharian, G.
    Kyriazis, G.
    Petrushev, P.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2019, 25 (06) : 3259 - 3309
  • [36] Hardy spaces of spaces of homogeneous type
    Duong, XT
    Yan, LX
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (10) : 3181 - 3189
  • [37] Littlewood-Paley characterizations for Hardy spaces on spaces of homogeneous type
    Han, Yongsheng
    Mueller, Detlef
    Yang, Dachun
    MATHEMATISCHE NACHRICHTEN, 2006, 279 (13-14) : 1505 - 1537
  • [38] Hardy Spaces Associated with Ball Quasi-Banach Function Spaces on Spaces of Homogeneous Type: Littlewood—Paley Characterizations with Applications to Boundedness of Calderón—Zygmund Operators
    Xian Jie Yan
    Zi Yi He
    Da Chun Yang
    Wen Yuan
    Acta Mathematica Sinica, English Series, 2022, 38 : 1133 - 1184
  • [39] Product Hardy spaces associated to operators with heat kernel bounds on spaces of homogeneous type
    Peng Chen
    Xuan Thinh Duong
    Ji Li
    Lesley A. Ward
    Lixin Yan
    Mathematische Zeitschrift, 2016, 282 : 1033 - 1065
  • [40] Product Hardy spaces associated to operators with heat kernel bounds on spaces of homogeneous type
    Chen, Peng
    Xuan Thinh Duong
    Li, Ji
    Ward, Lesley A.
    Yan, Lixin
    MATHEMATISCHE ZEITSCHRIFT, 2016, 282 (3-4) : 1033 - 1065