Maximal function characterizations for Hardy spaces associated with nonnegative self-adjoint operators on spaces of homogeneous type

被引:0
|
作者
Liang Song
Lixin Yan
机构
[1] Sun Yat-sen University,Department of Mathematics
来源
Journal of Evolution Equations | 2018年 / 18卷
关键词
Hardy space; Nonnegative self-adjoint operator; Atomic decomposition; The nontangential and radial maximal functions; Spaces of homogeneous type; Primary 42B30; Secondary 42B35; 47B38;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a metric measure space with a doubling measure and L be a nonnegative self-adjoint operator acting on L2(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(X)$$\end{document}. Assume that L generates an analytic semigroup e-tL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e^{-tL}$$\end{document} whose kernels pt(x,y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_t(x,y)$$\end{document} satisfy Gaussian upper bounds but without any assumptions on the regularity of space variables x and y. In this article, we continue a study in Song and Yan (Adv Math 287:463–484, 2016) to give an atomic decomposition for the Hardy spaces HL,maxp(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H^p_{L,\mathrm{max}}(X)$$\end{document} in terms of the nontangential maximal function associated with the heat semigroup of L, and hence, we establish characterizations of Hardy spaces associated with an operator L, via an atomic decomposition or the nontangential maximal function. We also obtain an equivalence of HL,maxp(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H^p_{L, \mathrm{max}}(X)$$\end{document} in terms of the radial maximal function.
引用
收藏
页码:221 / 243
页数:22
相关论文
共 50 条
  • [21] Hardy and Carleson Measure Spaces Associated with Operators on Spaces of Homogeneous Type
    Han, Yanchang
    Han, Yongsheng
    Li, Ji
    Tan, Chaoqiang
    POTENTIAL ANALYSIS, 2018, 49 (02) : 247 - 265
  • [22] Hardy and Carleson Measure Spaces Associated with Operators on Spaces of Homogeneous Type
    Yanchang Han
    Yongsheng Han
    Ji Li
    Chaoqiang Tan
    Potential Analysis, 2018, 49 : 247 - 265
  • [23] Hardy Spaces Associated to Non-Negative Self-Adjoint Operators Satisfying Davies-Gaffney Estimates
    Hofmann, Steve
    Lu, Guozhen
    Mitrea, Dorina
    Mitrea, Marius
    Yan, Lixin
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 214 (1007) : 1 - +
  • [24] Non-tangential Maximal Function Characterizations of Hardy Spaces Associated with Degenerate Elliptic Operators
    Zhang, Junqiang
    Cao, Jun
    Jiang, Renjin
    Yang, Dachun
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2015, 67 (05): : 1161 - 1200
  • [25] Maximal function characterizations of Hardy spaces associated with Schrödinger operators on nilpotent Lie groups
    Renjin Jiang
    Xiaojuan Jiang
    Dachun Yang
    Revista Matemática Complutense, 2011, 24 : 251 - 275
  • [26] ATOMIC CHARACTERIZATIONS OF HARDY SPACES ASSOCIATED TO SCHRODINGER TYPE OPERATORS
    Zhang, Junqiang
    Liu, Zongguang
    ADVANCES IN OPERATOR THEORY, 2019, 4 (03) : 604 - 624
  • [27] Hardy Spaces Associated with Ball Quasi-Banach Function Spaces on Spaces of Homogeneous Type: Littlewood-Paley Characterizations with Applications to Boundedness of Calderon-Zygmund Operators
    Yan, Xian Jie
    He, Zi Yi
    Yang, Da Chun
    Yuan, Wen
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (07) : 1133 - 1184
  • [28] Characterizations of Hardy spaces associated with Laplace–Bessel operators
    Cansu Keskin
    Ismail Ekincioglu
    Vagif S. Guliyev
    Analysis and Mathematical Physics, 2019, 9 : 2281 - 2310
  • [29] Maximal operators on spaces of homogeneous type
    Pradolini, G
    Salinas, O
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (02) : 435 - 441
  • [30] Maximal function characterizations of Hardy spaces on RD-spaces and their applications
    Loukas Grafakos
    LiGuang Liu
    DaChun Yang
    Science in China Series A: Mathematics, 2008, 51