The role played by the flexible polymer polyacrylamide (PAM) and the rigid polymer xanthan gum (XG) on drag in Taylor–Couette geometry: from Taylor’s vortexes to fully turbulent flow

被引:0
作者
Edson J. Soares
Ivanor M. Silva
Rafhael M. Andrade
Renato N. Siqueira
机构
[1] Universidade Federal do Espírito Santo,LABREO, Laboratory of Rheology, Department of Mechanical Engineering
[2] Instituto Federal do Espírito Santo,LPMF, Department of Mechanical Engineering
来源
Journal of the Brazilian Society of Mechanical Sciences and Engineering | 2020年 / 42卷
关键词
Taylor vortexes; Polymers; Flow regime;
D O I
暂无
中图分类号
学科分类号
摘要
We study how the flexible polymer polyacrylamide (PAM) and the rigid polymer Xanthan gum (XG) affect drag in a Taylor–Couette geometry, mainly for small Reynolds numbers, in which the Newtonian flow is characterized by laminar instabilities. Our study is focused on the range 145≤Re≤1200\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$145\le {\mathrm{Re}}\le 1200$$\end{document}. The role played by concentration is very complex for Re<600\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{Re}}<600$$\end{document}. We suppose that two distinct polymeric effects occur all together. One of them is the so-called elasto-inertial turbulence, small elasto-inertial instabilities that work to increase drag, and the other effect is related to changes in the large structures, which contributes to reduce drag. It seems that elasto-inertial turbulence is important at very small Re. In such regime, the drag reduction is not so clear, but for Re≥600\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{Re}}\ge 600$$\end{document}, the drag is clearly reduced and it is possibly related to changes in the large structures.
引用
收藏
相关论文
共 146 条
[1]  
Groisman A(1996)Couette–Taylor flow in a dilute polymer solution Phys Rev Lett 77 1480-317
[2]  
Steinberg V(1989)A purely elastic transition in Taylor–Couette flow Rheol Acta 28 409-542
[3]  
Muller SJ(1993)Experimental studies of the onset of scilatory instability in viscoelastic Taylor Couette flow J Non Newton Fluid Mech 46 315-undefined
[4]  
Larson RG(1994)The effect of fluid rheology on the elastic Taylor–Couette instability J Non Newton Fluid Mech 51 195-undefined
[5]  
Shaqfeh ESG(1986)Flow regimes in a circular couette system with independently rotating cylinders J Fluid Mech 164 155-undefined
[6]  
Muller SJ(2009)The effects of drag reducing polymers on flow stability: insights from the Taylor–Couette problem Korea Aust Rheol J 21 223-undefined
[7]  
Shaqfeh ESG(1990)A purely elastic instability in Taylor–Couette flow J Fluid Mech 218 573-undefined
[8]  
Larson RG(1992)The effects of gap width and dilute solution properties on the viscoelastic Taylor-Couette instability J Fluid Mech 235 285-undefined
[9]  
Larson RG(2002)Experimental study of inertioelastic Couette–Taylor instability modes in dilute and semidilute polymer solutions Phys Fluids 14 1681-undefined
[10]  
Muller SJ(1980)Studies of drag reduction conducted over a broad range of pipeline conditions when flowing prudhoe bay crude oil J Rheol 24 603-undefined