Hardy inequalities for weighted Dirac operator

被引:0
作者
Kyril Adimurthi
机构
[1] Tata Institute of Fundamental Research,Centre of Applicable Mathematics
[2] Uppsala University,Department of Mathematics
来源
Annali di Matematica Pura ed Applicata | 2010年 / 189卷
关键词
Dirac operator; Hardy inequality; Optimal constants; Primary 35Q40; 35Q75; 46N50; 81Q10; Secondary 35P05; 47A05; 47F05;
D O I
暂无
中图分类号
学科分类号
摘要
An inequality of Hardy type is established for quadratic forms involving Dirac operator and a weight r−b for functions in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^n}$$\end{document}. The exact Hardy constant cb = cb(n) is found and generalized minimizers are given. The constant cb vanishes on a countable set of b, which extends the known case n = 2, b = 0 which corresponds to the trivial Hardy inequality in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^2}$$\end{document}. Analogous inequalities are proved in the case cb = 0 under constraints and, with error terms, for a bounded domain.
引用
收藏
页码:241 / 251
页数:10
相关论文
共 28 条
  • [1] Adimurthi M.J.(2005)An improved Hardy-Sobolev inequality in Nonlinear Differ. Equ. Appl. 12 243-263
  • [2] Esteban K.(2002) and its application to Schrödinger operators Proc. Roy. Soc. Edinburgh Sect. A 132 1021-1043
  • [3] Adimurthi A.(2006)Existence and non-existence of the first eigenvalue of the perturbed Hardy- Sobolev operator Proc. Roy. Soc. Edinburgh Sect. A 136 1111-1130
  • [4] Sandeep N.(2002)Role of the fundamental solution in Hardy-Sobolev-type inequalities Proc. Am. Math. Soc. 130 489-505
  • [5] Adimurthi M.(1997)An improved Hardy-Sobolev inequality and its application Rev. Mat. Univ. Complut. Madrid 10 443-469
  • [6] Sekar H.(1984)Blow-up solutions of some nonlinear elliptic problems Compositio Math. 53 259-275
  • [7] Adimurthi J.L.(2001)First order interpolation inequalities with weights Comm. Pure Appl. Math. 54 229-258
  • [8] Chaudhuri L.(2004)On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions J. Funct. Anal. 216 1-21
  • [9] Ramaswamy R.(2000)An analytical proof of Hardy-like inequalities related to the Dirac operator J. Funct. Anal. 174 208-226
  • [10] Brezis L.(2002)On the eigenvalues of operators with gaps. Application to Dirac operators J. Funct. Anal. 192 186-233