Exponential functions in prime characteristic

被引:5
作者
Mattarei S. [1 ]
机构
[1] Dipartimento di Matematica, Universitá degli Studi di Trento, I-38050 Povo (Trento)
关键词
Artin-Hasse exponential; Exponential series; Functional equation;
D O I
10.1007/s00010-005-2816-4
中图分类号
学科分类号
摘要
In this note we determine all power series F(X) ∈ 1 + X double-struck F sign p[[X]] such that (F(X + Y))-1 F(X)F(Y) has only terms of total degree a multiple of p. Up to a scalar factor they are all the series of the form F(X) = E p (cX)• G(X p ) for some c ∈ double-struck F sign p and G(X) ∈ 1 + X double-struck F sign p[[X]] where Ep(X)= exp (∑i=0 ∞ Xp i/pi) is the Artin-Hasse exponential. © Birkhäuser Verlag, Basel, 2006.
引用
收藏
页码:311 / 317
页数:6
相关论文
共 8 条
  • [1] Dieudonne J., On the Artin-Hasse exponential series, Proc. Amer. Math. Soc., 8, pp. 210-214, (1957)
  • [2] Fesenko I.B., Vostokov S.V., Local fields and their extensions, Trans. Math. Monogr., 121, (1993)
  • [3] Gerstenhaber M., On the deformation of rings and algebras, Ann. of Math. (2), 79, pp. 59-103, (1964)
  • [4] Gerstenhaber M., Schach S.D., Algebraic cohomology and deformation theory, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 247, pp. 11-264, (1986)
  • [5] Hayes D.R., Introduction to: "chapter 19 of 'the arithmetic of polynomials'" [finite fields appl. 1 (1995), no. 2, 157-164] by L. Carlitz, Finite Fields Appl., 1, 2, pp. 152-156, (1995)
  • [6] Hazewinkel M., Formal groups and applications, Pure Appl. Math., 78, (1978)
  • [7] Mattarei S., Artin-hasse exponentials of derivations, J. Algebra, 294, 1, pp. 1-18, (2005)
  • [8] Robert A.M., A Course in p-adic Analysis, Grad. Texts in Math., 198, (2000)