The Bellman Function for a Parametric Family of Extremal Problems in BMO

被引:0
作者
Osipov N.N. [1 ]
机构
[1] St. Petersburg Department of Steklov Institute of Mathematics and National Research University “Higher School of Economics”, St. Petersburg
关键词
D O I
10.1007/s10958-019-04591-5
中图分类号
学科分类号
摘要
Let I be an interval of the real line and 〈⋅〉I be the corresponding integral average. We describe the behavior of the Bellman function for the functional F(φ) = 〈f ∘ φ〉I, φ ∈ BMO(I), as f ranges over some parametric family of functions. Thereby, we once again demonstrate the power of the methods developed recently by V. I. Vasyunin, P. B. Zatitskiy, P. Ivanishvili, D. M. Stolyarov, and the author. © 2019, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:907 / 916
页数:9
相关论文
共 3 条
  • [1] Ivanishvili P., Osipov N.N., Stolyarov D.M., Vasyunin V.I., Zatitskiy P.B., Bellman function for extremal problems in BMO, Trans. Amer. Math. Soc., 368, pp. 3415-3468, (2016)
  • [2] Ivanisvili P., Stolyarov D.M., Vasyunin V.I., Zatitskiy P.B., Bellman Function for Extremal Problems in BMO II: Evolution, Memoirs Amer. Math. Soc., 255, 1220, (2018)
  • [3] Vasyunin V.I., An example of the construction of a Bellman function for extremal problems in BMO space, J. Math. Sci., 209, 5, pp. 683-742, (2015)