Algebras generated by two bounded holomorphic functions

被引:0
作者
Michael I. Stessin
Pascal J. Thomas
机构
[1] University at Albany,Department of Mathematics and Statistics
[2] Laboratoire Emile Picard,undefined
[3] UMR CNRS 5580,undefined
来源
Journal d’Analyse Mathématique | 2003年 / 90卷
关键词
Holomorphic Function; Unit Circle; Unit Disk; Hardy Space; Blaschke Product;
D O I
暂无
中图分类号
学科分类号
摘要
We study the closure in the Hardy space or the disk algebra of algebras generated by two bounded functions, one of which is a finite Blaschke product. We give necessary and sufficient conditions for density or finite codimension (of the closure) of such algebras. The conditions are expressed in terms of the inner part of a certain function which is explicitly derived from each pair of generators. Our results are based on identifyingz-invariant subspaces included in the closure of the algebra.
引用
收藏
页码:89 / 114
页数:25
相关论文
共 15 条
  • [1] Blumenthal R. G.(1974)Holomorphically closed algebras of analytic functions Math. Scand. 34 84-90
  • [2] Burchnall J. L.(1928)Commutative ordinary differential operators Proc. Roy. Soc. London, Ser. A 118 557-583
  • [3] Chaundy T. W.(2000)Submodules of the Hardy space over polynomial algebras Pacific J. Math. 194 373-392
  • [4] Jaffrey M. J.(1997)Wandering property in the Hardy space Michigan Math. J. 44 597-606
  • [5] Lance T. L.(1997)Multiplication invariant subspaces of Hardy spaces Canad. J. Math. 49 100-118
  • [6] Stessin M. I.(1957)The closed ideals in an algebra of analytic functions Canad. J. Math. 9 426-434
  • [7] Khavinson D.(1974)Generators for A(Ω) Trans. Amer. Math. Soc. 194 103-114
  • [8] Lance T. L.(1958)Rings of analytic functions Ann. of Math. 67 497-516
  • [9] Stessin M. I.(undefined)undefined undefined undefined undefined-undefined
  • [10] Lance T. L.(undefined)undefined undefined undefined undefined-undefined