Singular Solutions of Fully Nonlinear Elliptic Equations and Applications

被引:0
|
作者
Scott N. Armstrong
Boyan Sirakov
Charles K. Smart
机构
[1] The University of Chicago,Department of Mathematics
[2] Université Paris 10,UFR SEGMI
[3] CAMS,undefined
[4] EHESS,undefined
[5] Courant Institute of Mathematical Sciences,undefined
来源
Archive for Rational Mechanics and Analysis | 2012年 / 205卷
关键词
Maximum Principle; Dirichlet Problem; Viscosity Solution; Lipschitz Domain; Comparison Principle;
D O I
暂无
中图分类号
学科分类号
摘要
We study the properties of solutions of fully nonlinear, positively homogeneous elliptic equations near boundary points of Lipschitz domains at which the solution may be singular. We show that these equations have two positive solutions in each cone of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^n}$$\end{document} , and the solutions are unique in an appropriate sense. We introduce a new method for analyzing the behavior of solutions near certain Lipschitz boundary points, which permits us to classify isolated boundary singularities of solutions which are bounded from either above or below. We also obtain a sharp Phragmén–Lindelöf result as well as a principle of positive singularities in certain Lipschitz domains.
引用
收藏
页码:345 / 394
页数:49
相关论文
共 50 条
  • [1] Singular Solutions of Fully Nonlinear Elliptic Equations and Applications
    Armstrong, Scott N.
    Sirakov, Boyan
    Smart, Charles K.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (02) : 345 - 394
  • [2] Singular viscosity solutions to fully nonlinear elliptic equations
    Nadirashvili, Nikolai
    Vladut, Serge
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 89 (02): : 107 - 113
  • [3] Singular solutions of Hessian fully nonlinear elliptic equations
    Nadirashvili, Nikolai
    Vladut, Serge
    ADVANCES IN MATHEMATICS, 2011, 228 (03) : 1718 - 1741
  • [4] On Singular Solutions of Nonlinear Elliptic and Parabolic Equations
    Nirenberg, Louis
    MILAN JOURNAL OF MATHEMATICS, 2011, 79 (01) : 3 - 12
  • [5] On Singular Solutions of Nonlinear Elliptic and Parabolic Equations
    Louis Nirenberg
    Milan Journal of Mathematics, 2011, 79 : 3 - 12
  • [6] Fundamental Solutions of Homogeneous Fully Nonlinear Elliptic Equations
    Armstrong, Scott N.
    Sirakov, Boyan
    Smart, Charles K.
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (06) : 737 - 777
  • [7] Nonclassical Solutions of Fully Nonlinear Elliptic Equations
    Nikolai Nadirashvili
    Serge Vlăduţ
    Geometric and Functional Analysis, 2007, 17 : 1283 - 1296
  • [8] Nonclassical solutions of fully nonlinear elliptic equations
    Nadirashvili, Nikolai
    Vladut, Serge
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2007, 17 (04) : 1283 - 1296
  • [9] Existence of Solutions to Fully Nonlinear Elliptic Equations with Gradient Nonlinearity
    Tyagi, Jagmohan
    Verma, Ram Baran
    TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (05): : 1037 - 1056
  • [10] A boundary expansion of solutions to nonlinear singular elliptic equations
    Jian, Huaiyu
    Lu, Jian
    Wang, Xu-Jia
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (01) : 9 - 30