Huppert’s Analogue Conjecture for PSL(3,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{ PSL }}(3,q)$$\end{document} and PSU(3,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{ PSU }}(3,q)$$\end{document}

被引:0
作者
Yang Liu
Yong Yang
机构
[1] Tianjin Normal University,School of Mathematical Science
[2] Texas State University,Department of Mathematics
关键词
Codegree; character degree; simple groups; 20C15; 20D05;
D O I
10.1007/s00025-022-01778-2
中图分类号
学科分类号
摘要
Let G be a finite group and χ∈Irr(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi \in \text{ Irr }(G)$$\end{document}. The codegree of χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document} is defined as cod(χ)=|G:ker(χ)|χ(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{ cod }}(\chi )=\frac{|G:\ker (\chi )|}{\chi (1)}$$\end{document} and cod(G)={cod(χ)|χ∈Irr(G)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{ cod }}(G)=\{ {\text{ cod }}(\chi ) \ |\ \chi \in \text{ Irr }(G)\}$$\end{document} is called the set of codegrees of G. In this paper, we show that the set of codegrees of PSL(3,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{ PSL }}(3,q)$$\end{document} and PSU(3,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\text{ PSU }}(3,q)$$\end{document} determines the group up to isomorphism.
引用
收藏
相关论文
共 35 条
[1]  
Ahanjideh N(2022)Nondivisibility among irreducible character co-degrees Bull. Aust. Math. Soc. 105 68-74
[2]  
Alizadeh F(2019)Groups with few codegrees of irreducible characters Commun. Algebra 47 1147-1152
[3]  
Behravesh H(2021)Simple groups with few irreducible character degrees J. Algebra Appl. 20 2150139-286
[4]  
Ghaffarzadeh M(2021)An analogue of Huppert’s conjecture for character codegrees Bull. Aust. Math. Soc. 104 278-676
[5]  
Ghasemi M(2007)Character degree graphs that are complete graphs Proc. Am. Math. Soc. 135 671-29
[6]  
Hekmatarah S(1990)On character degrees quotients Arch. Math. 55 25-567
[7]  
Aziziheris K(2016)Codegrees and nilpotence class of J. Group Theory 19 561-501
[8]  
Shafiei F(2022)-groups Bull. Aust. Math. Soc. 97 499-1279
[9]  
Shirjian F(2011)Recognizing Arch. Math. 11 2150196-955
[10]  
Bahri A(2021) using the codegree set J. Algebra Appl. 49 1274-824