A nonexistence result for a nonlinear wave equation with damping on a Riemannian manifold

被引:0
作者
Qiang Ru
机构
[1] China University of Mining and Technology,Department of Mathematics
来源
Boundary Value Problems | / 2016卷
关键词
nonexistence; wave equation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the global nonexistence of solutions to a nonlinear wave equation with critical potential V(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V(x)$\end{document} on a Riemannian manifold, the form of which is more general than those in (Todorova and Yordanov in C. R. Acad. Sci., Sér. 1 Math. 300:557-562, 2000). The way we follow is motivated by the work of Qi S. Zhang (C. R. Acad. Sci., Sér. 1 Math. 333:109-114, 2001). We also prove the local existence and uniqueness result.
引用
收藏
相关论文
共 17 条
[1]  
Todorova G(2000)Critical exponent for a nonlinear wave equation with damping C. R. Acad. Sci., Sér. 1 Math. 300 557-562
[2]  
Yordanov B(2001)A blow-up result for a nonlinear wave equation with damping: the critical case C. R. Acad. Sci., Sér. 1 Math. 333 109-114
[3]  
Zhang QS(1990)The role of critical exponents in blow-up theorems SIAM Rev. 32 262-288
[4]  
Levine HA(1998)A new critical phenomenon for semilinear parabolic problems J. Math. Anal. 219 125-139
[5]  
Zhang QS(2007)Wave character of metrics and hyperbolic mean curvature flow J. Math. Phys. 48 1-14
[6]  
Kong D-X(2009)Hyperbolic mean curvature flow J. Differ. Equ. 246 373-390
[7]  
Liu K(1999)Blow-up results for nonlinear parabolic equations on manifolds Duke Math. J. 97 515-539
[8]  
He C-L(2013)Critical exponent for the semilinear wave equation with critical potential Nonlinear Differ. Equ. Appl. 20 1379-1391
[9]  
Kong D-X(2012)Critical exponent for the semilinear wave equation with time-dependent damping Discrete Contin. Dyn. Syst., Ser. A 32 4307-4320
[10]  
Liu K(1999)Blow-up results for nonlinear parabolic equations on manifolds Duke Math. J. 97 515-539