Positive Solutions of Schrödinger Equations in Product form and Martin Compactifications of the Plane, II

被引:0
作者
Minoru Murata
Tetsuo Tsuchida
机构
[1] Meijo University,Department of Mathematics
来源
Potential Analysis | 2023年 / 59卷
关键词
Martin boundary; Schrödinger operator; Positive solution; Green function; Jost solutions; 31C35; 35B09; 35J10; 35J08; 35C15;
D O I
暂无
中图分类号
学科分类号
摘要
We determine the structure of all positive solutions to a Schrödinger equation (−Δ + V1(x1) + V2(x2))u = 0 on ℝ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb R^{2}$\end{document}, where real potentials Vj, j = 1,2, satisfy Vj∈L11={V;(1+|t|)V(t)∈L1(ℝ)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V_{j}\in {L^{1}_{1}} =\{V; (1+|t|)V(t)\in L^{1}(\mathbb R)\}$\end{document}. We also treat the case where V1∈L11\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V_{1}\in {L^{1}_{1}}$\end{document} and V2 belongs to a wide class of functions including model potentials V2(t) = |t|a, a > 0. We show that non-minimal Martin boundary points appear generically. On analysis of asymptotics of the Green functions of the Schrödinger equations, the Jost solutions of one dimensional Schrödinger equations with potential functions in L11\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${L_{1}^{1}}$\end{document} play a central role.
引用
收藏
页码:519 / 563
页数:44
相关论文
共 34 条
[1]  
Aikawa H(2001)Boundary Harnack principle and Martin boundary for a uniform domain J. Math. Soc. Japan 53 119-145
[2]  
Aikawa H(1996)Generalized Cranston-McConnel inequalities and Martin boundaries of unbounded domains J. Analyse Math. 69 137-152
[3]  
Murata M(1987)Negatively curved manifolds, elliptic operators and the Martin boundary Ann. Math. 121 429-461
[4]  
Ancona A(2012)On positive harmonic functions in cones and cylinders Rev. Mat. Iberoamer. 28 201-230
[5]  
Ancona A(1982)Representation formulas for solutions to Δu − u = 0 in $\mathbb {R}^{n}$ℝn. Studies in Partial Differential Equations Math. Assoc. Amer. 23 249-263
[6]  
Caffarelli LA(2016)Martin compactification of a complete surface with negative curvature Math. Ann. 366 1467-1512
[7]  
Littman W(1979)Inverse scattering on the line Comm. Pure and Appl Math. 33 121-251
[8]  
Cao H(1993)The Martin compactification of the Cartesian product of two hyperbolic spaces J. Reine Angew. Math. 444 17-28
[9]  
He C(1964)Martin boundary for linear elliptic differential operators of second order in a manifold J. Math. Soc. Japan 16 307-334
[10]  
Deift P(2019)On the Martin boundary of rank 1 manifolds with nonpositive curvature J. Geom. Anal. 29 2805-2822