Trifunctional Catalysts for Overall Water Splitting and Oxygen Reduction Reaction Derived from Co,Ni MOFs

被引:0
作者
Ana Katherine Díaz-Duran
Guido Iadarola-Pérez
Emilia B. Halac
Federico Roncaroli
机构
[1] Comisión Nacional de Energía Atómica (CNEA),Departamento de Física de la Materia Condensada, Gerencia de Investigación y Aplicaciones, Centro Atómico Constituyentes
[2] Centro Atómico Constituyentes,Instituto de Nanociencia y Nanotecnología (CNEA
[3] Universidad de Buenos Aires,CONICET)
[4] Ciudad Universitaria,Departamento de Química Inorgánica Analítica y Química Física, Facultad de Ciencias Exactas y Naturales
[5] Pabellón II,undefined
[6] Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET),undefined
来源
Topics in Catalysis | 2022年 / 65卷
关键词
Metal organic framework; Electrolyzer; Non-noble catalyst; Platinum-free; Oxygen evolution reaction; Hydrogen evolution reaction;
D O I
暂无
中图分类号
学科分类号
摘要
In order to obtain platinum-group-metal-free catalysts for the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) in alkaline electrolyzers, nitrogen-doped mesoporous carbons were prepared from pyrolysis of two cobalt metal organic frameworks (MOFs), one linear coordination polymer and one complex. The catalyst derived from cobalt 2,3-pyrazinedicarboxylate polymer (700 °C) had a Tafel slope of 90 mV dec−1 and 130 mV dec−1 for the HER and OER respectively, a current density of 10 mA cm−2 was reached at − 0.23 V and 1.56 V vs RHE for the HER and OER respectively. In order to prove the bifunctional catalytic activity towards the overall water splitting, a two electrode electrolyzer was constructed depositing the catalyst on carbon paper. H2 and O2 evolved volumes followed the Faraday law, showing efficiency very close to 100%. The same materials also showed catalytic activity towards the oxygen reduction reaction (ORR), reaching an electron transfer number close to 4 and low H2O2 yields. The acid leached catalyst derived from Cobalt 2,3-pyrazinedicarboxylate polymer (700 °C) reached a ∆E = Ej = 10(OER) −E½(ORR) = 0.80 V, making it an useful oxygen catalyst for metal-air batteries.
引用
收藏
页码:887 / 901
页数:14
相关论文
共 327 条
  • [1] Chen D(2015)Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices Chem Rev 115 9869-9921
  • [2] Chen C(2018)Carbon-rich nanomaterials: fascinating hydrogen and oxygen electrocatalysts Adv Mater 30 1800528-1724
  • [3] Baiyee ZM(2019)Carbon-based nanomaterials as sustainable noble-metal-free electrocatalysts Front Chem 7 759-226
  • [4] Shao Z(2013)Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013) Pure Appl Chem 85 1715-3241
  • [5] Ciucci F(2021)Isoreticular chemistry within metal–organic frameworks for gas storage and separation Coord Chem Rev 443 213968-3687
  • [6] Zhang J(2019)Metal-organic frameworks: a novel platform for combined advanced therapies Coord Chem Rev 388 202-1630
  • [7] Chen G(2017)An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors Chem Soc Rev 46 3185-2079
  • [8] Müllen K(2020)Metal organic frameworks for biomass conversion Chem Soc Rev 49 3638-4636
  • [9] Feng X(2021)Electrically conductive coordination polymers for electronic and optoelectronic device applications J Phys Chem Lett 12 1612-3209
  • [10] Meng Y(2017)Ultrathin metal-organic framework array for efficient electrocatalytic water splitting Nat Commun 8 15341-1695