Diffusive Lotka-Volterra system: Lie symmetries and exact and numerical solutions

被引:0
作者
Cherniha R.M. [1 ]
Dutka V.A. [2 ]
机构
[1] Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv
[2] Institute of Superhard Materials, Ukrainian National Academy of Sciences, Kyiv
关键词
Exact Solution; Neumann Condition;
D O I
10.1007/s11253-005-0142-6
中图分类号
学科分类号
摘要
We present a complete description of Lie symmetries for the nonlinear diffusive Lotka-Volterra system. The results are used for the construction of exact solutions of the Lotka-Volterra system, which, in turn, are used for solving the corresponding nonlinear boundary-value problems with zero Neumann conditions. The analytic results are compared with the results of computation based on the finite-element method. We conclude that the obtained exact solutions play an important role in solving Neumann boundary-value problems for the Lotka-Volterra system. © 2005 Springer Science+Business Media, Inc.
引用
收藏
页码:1665 / 1675
页数:10
相关论文
共 17 条
  • [1] Lotka A.J., Updated oscillations derived from the law of mass action, J. Amer. Chem. Soc., 42, pp. 1595-1599, (1920)
  • [2] Volterra V., Variazionie fluttuazioni del numero d'individui in specie animali conviventi, Mem. Acad. Lincei, 2, pp. 31-113, (1926)
  • [3] Murray J.D., Mathematical Biology, (1989)
  • [4] Conway E., Smoller J., Diffusion and predator-prey interaction, SIAM J. Appl. Math., 33, pp. 673-686, (1977)
  • [5] Brown P.N., Decay to uniform states in ecological interactions, SIAM J. Appl. Math., 38, pp. 22-37, (1980)
  • [6] Lou Y., Ni W.-M., Diffusion, self-diffusion and cross-diffusion, J. Different. Equal., 131, pp. 79-131, (1996)
  • [7] Malfliet W., Series solution of nonlinear coupled reaction-diffusion equations, J. Phys. A, Math. Gen., 24, pp. 5499-5503, (1991)
  • [8] Archilla J., Romero J., Romero F., Palmero F., Lie symmetries and multiple solutions in α - ω reaction-diffusion systems, J. Phys. A, Math. Gen., 30, pp. 185-194, (1997)
  • [9] Ovsyannikov L.V., Group Analysis of Differential Equations [in Russian], (1978)
  • [10] Zienkiewicz O.C., Morgan K., Finite Elements and Approximation, (1983)