Quantitative irrationality for sums of reciprocals of Fibonacci and Lucas numbers

被引:0
作者
Tapani Matala-Aho
Marc Prévost
机构
[1] Matemaattisten tieteiden laitos,Laboratoire de Mathématiques Pures et Appliquées
[2] Université du Littoral,undefined
来源
The Ramanujan Journal | 2006年 / 11卷
关键词
Irrationality measure; Padé approximation; Cyclotomic polynomial; -series;
D O I
暂无
中图分类号
学科分类号
摘要
Irrationality measures are given for the values of the series \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum_{n=0}^{\infty} t^{n}/W_{an+b}$$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,b\in\mathbb{Z}^+, 1\le b\le a, (a,b)=1$$\end{document} and Wn is a rational valued Fibonacci or Lucas form, satisfying a second order linear recurrence. In particular, we prove irrationality of all the numbers \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \sum_{n=0}^\infty \frac{1}{f_{an+b}},\quad \sum_{n=0}^\infty \frac{1}{l_{an+b}}, $$\end{document} where fn and ln are the Fibonacci and Lucas numbers, respectively.
引用
收藏
页码:249 / 261
页数:12
相关论文
共 17 条
[1]  
André-Jeannin R.(1989)Irrationalité de la somme des inverses de certaines suites récurrentes C. R. Acad. Sci. Paris, Sér. I Math. 308 539-541
[2]  
Bavencoffe E.(1992)PPCM de suites de polynomes Ann. Fac. Sc. Toulouse 1 147-168
[3]  
Bézivin J.-P.(1989)Plus Petit commun multiple des termes consécutifs d'une suite récurrente linéaire Collect. Math. 40 1-11
[4]  
Bundschuh P.(1994)Arithmetical investigations of a certain infinite product Compositio Math 91 175-199
[5]  
Väänänen K.(1913–1914)On the numerical factors of the arithmetic forms α Ann. Math 15 30-70
[6]  
Carmichael R.D.(1997)± β Proc. Japan Acad. Ser. A. Math. Sci. 73 140-142
[7]  
Duverney D.(1991)Transcendence of Rogers-Ramanujan continued fraction and reciprocal sums of Fibonacci numbers Acta Univ. Oulu. Ser. A Sci. Rerum Natur. 219 1-112
[8]  
Nishioka K.(2002)Remarks on the arithmetic properties of certain hypergeometric series of Gauss and Heine Proc. Roy. Soc. Edinburgh 132A 639-659
[9]  
Nishioka K.(2002)On Diophantine approximations of the solutions of q-functional equations J. Number Theory 96 275-292
[10]  
Shiokawa I.(1996)Irrationality measures for the series of reciprocals from recurrence sequences Mat. Sb. 187 65-96