On non-abelian higher special elements of p-adic representations

被引:0
作者
Daniel Macias Castillo
Kwok-Wing Tsoi
机构
[1] Universidad Autónoma de Madrid and Instituto de Ciencias Matemáticas,Departamento de Matemáticas
[2] National Taiwan University,Department of Mathematics
来源
Israel Journal of Mathematics | 2022年 / 248卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We develop a theory of ‘non-abelian higher special elements’ in the non-commutative exterior powers of the Galois cohomology of p-adic representations. We explore their relation to the theory of organising matrices and thus to the Galois module structure of Selmer modules. In concrete applications, we relate our general theory to the formulation of refined conjectures of Birch and Swinnerton-Dyer type and to the Galois structure of Tate–Shafarevich and Selmer groups of abelian varieties.
引用
收藏
页码:95 / 147
页数:52
相关论文
共 47 条
[1]  
Bley W(2016)Equivariant epsilon constant conjectures for weakly ramified extensions Mathematische Zeitschrift 283 1217-1244
[2]  
Cobbe A(2017)(1) Acta Arithmetica 178 313-383
[3]  
Bley W(2013)Algorithmic proof of the epsilon constant conjecture Mathe-matics of Computation 82 2363-2387
[4]  
Cobbe A(2004)On equivariant global epsilon constants for certain dihedral extensions Mathematics of Computation 73 881-898
[5]  
Bley W(2004)Equivariant local epsilon constants and étale cohomology Journal of the London Mathematical Society 70 289-306
[6]  
Debeerst R(2011)On derivatives of Artin L-series Inventiones Mathematicae 186 291-371
[7]  
Breuning M(2001)Tamagawa numbers for motives with (non-commutative) coefficients Documenta Mathematica 6 501-570
[8]  
Breuning M(2016)Organising matrices for arithmetic complexes Documenta Mathematica 21 555-626
[9]  
Burns D(2014)On the Galois structure of Selmer groups International Mathematics Research Notices 2014 2814-2883
[10]  
Burns D(2015)On Mordell–Weil groups and congruences between derivatives of twisted Hasse–Weil L-functions International Mathematics Research Notices 2015 11909-11933