A note on bounds for non-linear multivalued homogenized operators

被引:0
作者
Svanstedt N. [1 ]
机构
[1] Department of Mathematics, Chalmers University, Göteborg University
关键词
Hashin-Shtrikman bounds; Highly oscillatory operators; Multivalued operators; Reuss-Voigt-Wiener bounds;
D O I
10.1023/A:1023210332327
中图分类号
学科分类号
摘要
In this paper we study the behaviour of maximal monotone multivalued highly oscillatory operators. We construct Reuss-Voigt-Wiener and Hashin-Shtrikmann type bounds for the minimal sections of G-limits of multivalued operators by using variational convergence and convex analysis.
引用
收藏
页码:81 / 92
页数:11
相关论文
共 32 条
[1]  
Allaire G., Kohn R.V., Optimal bounds on the effective behaviour of a mixture of two well-ordered elastic materials, Q. Appl. Math., 51, pp. 643-674, (1993)
[2]  
Attouch H., Variational Convergence for Functions and Operators, (1984)
[3]  
Avellaneda M., Optimal bounds and microgeometries for elastic two-phase composites, SIAM J. Appl. Math., 47, pp. 1216-1228, (1987)
[4]  
Chiado-Piat V., Dal Maso G., Defranceschi A., G-convergence of monotone operators, Ann. Inst. H. Poincaré, Anal. Non Lineare, 7, pp. 123-160, (1990)
[5]  
Chiado-Piat V., Defranceschi A., Homogenization of monotone operators, Nonlinear Anal., 14, pp. 717-732
[6]  
Dal Maso G., An Introduction to F-convergence, (1993)
[7]  
Defranceschi A., G-convergence of cyclically monotone operators, Asymptotic Anal., 1, pp. 21-37, (1989)
[8]  
Francfort G., Murat F., Homogenization and optimal bounds in linear elasticity, Arch. Rat. Mech. Anal., 94, pp. 307-334, (1986)
[9]  
Golden K., Papanicolaou G., Bounds for effective parameters of heterogeneous media by analytic continuation, Comm. Math. Phys., pp. 473-491, (1983)
[10]  
Hashin Z., Analysis of composite materials. A survey, J. Appl. Mech., 50, pp. 483-505, (1983)