Rational points of bounded height on projective surfaces

被引:0
作者
Per Salberger
机构
[1] Chalmers University of Technology,Department of Mathematics
来源
Mathematische Zeitschrift | 2008年 / 258卷
关键词
14G05; 11G35;
D O I
暂无
中图分类号
学科分类号
摘要
We give upper bounds for the number of rational points of bounded height on the complement of the lines on projective surfaces.
引用
收藏
页码:805 / 826
页数:21
相关论文
共 18 条
  • [1] Broberg N.(2004)A note on a paper by R. Heath-Brown: the density of rational points on curves and surfaces J. Reine. Angew. Math. 571 159-178
  • [2] Browning T.D.(2005)Plane curves in boxes and equal sums of two powers Math. Zeit. 251 233-247
  • [3] Heath-Brown R.(2005)Counting rational points on hypersurfaces J. Reine. Angew. Math. 584 83-116
  • [4] Browning T.D.(2006)Counting rational points on algebraic varieties Duke Math. J. 132 545-578
  • [5] Heath-Brown R.(2006)The enumerative geometry of del Pezzo surfaces via degenerations Am. J. Math. 128 751-786
  • [6] Browning T.D.(1983)On a theorem of Castelnuovo and the equations defining space curves Invent. Math. 72 491-506
  • [7] Heath-Brown R.(2002)The density of rational points on curves and surfaces Ann. Math. 155 553-595
  • [8] Salberger P.(1995)On another sieve method and the numbes that are a sum of two J. Reine. Angew. Math. 475 55-75
  • [9] Coskun I.(2005)-th powers. II. Ann. Sci. Éc. Norm. Sup. 38 93-115
  • [10] Gruson L.(2007)Counting rational points on hypersurfaces of low dimension J. Reine. Angew. Math. 606 123-147