A New Primal–Dual Algorithm for Minimizing the Sum of Three Functions with a Linear Operator

被引:4
|
作者
Ming Yan
机构
[1] Michigan State University,Department of Computational Mathematics, Science and Engineering
[2] Michigan State University,Department of Mathematics
来源
关键词
Fixed-point iteration; Nonexpansive operator; Chambolle–Pock; Primal–dual; Three-operator splitting;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a new primal–dual algorithm for minimizing f(x)+g(x)+h(Ax)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f({\mathbf {x}})+g({\mathbf {x}})+h({\mathbf {A}}{\mathbf {x}})$$\end{document}, where f, g, and h are proper lower semi-continuous convex functions, f is differentiable with a Lipschitz continuous gradient, and A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {A}}$$\end{document} is a bounded linear operator. The proposed algorithm has some famous primal–dual algorithms for minimizing the sum of two functions as special cases. E.g., it reduces to the Chambolle–Pock algorithm when f=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f=0$$\end{document} and the proximal alternating predictor–corrector when g=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g=0$$\end{document}. For the general convex case, we prove the convergence of this new algorithm in terms of the distance to a fixed point by showing that the iteration is a nonexpansive operator. In addition, we prove the O(1 / k) ergodic convergence rate in the primal–dual gap. With additional assumptions, we derive the linear convergence rate in terms of the distance to the fixed point. Comparing to other primal–dual algorithms for solving the same problem, this algorithm extends the range of acceptable parameters to ensure its convergence and has a smaller per-iteration cost. The numerical experiments show the efficiency of this algorithm.
引用
收藏
页码:1698 / 1717
页数:19
相关论文
共 50 条
  • [1] A New Primal-Dual Algorithm for Minimizing the Sum of Three Functions with a Linear Operator
    Yan, Ming
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 76 (03) : 1698 - 1717
  • [2] A Two-Step Inertial Primal-Dual Algorithm for Minimizing the Sum of Three Functions
    Wen, Meng
    Tang, Yuchao
    Xing, Zhiwei
    Peng, Jigen
    IEEE ACCESS, 2019, 7 : 161748 - 161753
  • [3] A primal-dual algorithm for minimizing a sum of Euclidean norms
    Qi, LQ
    Sun, DF
    Zhou, GL
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 138 (01) : 127 - 150
  • [4] A primal-dual fixed point algorithm for minimization of the sum of three convex separable functions
    Chen P.
    Huang J.
    Zhang X.
    Fixed Point Theory and Applications, 2016 (1)
  • [5] A stochastic primal-dual algorithm for composite optimization with a linear operator
    Wen, Meng
    Zhang, Yongqiang
    Tang, Yuchao
    Cui, Angang
    Peng, Jigen
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 267
  • [6] Optimal Minimization of the Sum of Three Convex Functions with a Linear Operator
    Ko, Seyoon
    Won, Joong-Ho
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [7] Regional division and reduction algorithm for minimizing the sum of linear fractional functions
    Shen, Pei-Ping
    Lu, Ting
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [8] Regional division and reduction algorithm for minimizing the sum of linear fractional functions
    Pei-Ping Shen
    Ting Lu
    Journal of Inequalities and Applications, 2018
  • [9] Primal-Dual Algorithm for Linear Optimization Problems Based on a New Class of Kernel Functions
    El Ghami, Mohamed
    Ivanov, Ivan
    Melissen, Hans
    Roos, Cornelis
    Steihaug, Trond
    2008 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS, VOLS 1-3, 2008, : 341 - +
  • [10] A primal-dual aggregation algorithm for minimizing conditional value-at-risk in linear programs
    Daniel Espinoza
    Eduardo Moreno
    Computational Optimization and Applications, 2014, 59 : 617 - 638