Universal functions for classes Lp[0,1)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p[0,1)^2$$\end{document}, p∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (0,1)$$\end{document}, with respect to the double Walsh system

被引:0
作者
Artsrun Sargsyan
Martin Grigoryan
机构
[1] RAU,
[2] YSU,undefined
关键词
Universal function; Universal series; Fourier coefficients; Walsh system; Convergence in metric; MSC 42C10; MSC 43A15;
D O I
10.1007/s11117-019-00663-7
中图分类号
学科分类号
摘要
In the paper it is shown that there exists a function U∈L1[0,1)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U\in L^1[0,1)^2$$\end{document}, which is universal for all class Lp[0,1)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{p}[0,1)^2$$\end{document}, p∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (0,1)$$\end{document}, by rectangles and by spheres with respect to the double Walsh system in the sense of signs of Fourier coefficients.
引用
收藏
页码:1261 / 1280
页数:19
相关论文
共 40 条
  • [1] Birkhoff GD(1929)Démonstration d’un théoréme élémentaire sur les fonctions entiéres C. R. Acad. Sci. Paris 189 473-475
  • [2] Marcinkiewicz J(1935)Sur les nombres derives Fund. Math. 24 305-308
  • [3] MacLane GR(1952)Sequences of derivatives and normal families J. Anal. Math. 2 72-87
  • [4] Grosse-Erdmann KG(1987)Holomorphe Monster und Universelle Funktionen Mitt. Math. Sem. Giessen 176 1-84
  • [5] Krotov VG(1991)On the smoothness of universal Marcinkiewicz functions and universal trigonometric series Sov. Math. (Iz. VUZ) 35 24-28
  • [6] Joy I(1989)On the divergence of eigenfunction expansions Ann. Univ. Sci. Budapest. Eotvos Sect. Math. 32 2-36
  • [7] Buczolich Z(1987)On universal functions and series Acta Math. Hungar. 49 403-414
  • [8] Grigoryan MG(2018)On the universal functions J. Approx. Theory 225 191-208
  • [9] Galoyan LN(1964)On universal sequences of functions Sb. Math. 65 272-312
  • [10] Menshov DE(1960)On the universal series with respect to rearrangements Izv. AN. SSSR Ser. Math. 24 567-604