Excess heat capacities, CpE12\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \left( {C_{p}^{\text{E}} } \right)_{12} $$\end{document} and CpE123\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \left( {C_{p}^{\text{E}} } \right)_{123} $$\end{document}, of binary tetrahydropyran (1) + N-methylformamide or N,N-dimethylformamide or cyclohexane (2), o-chlorotoluene (1) + cyclohexane (2), and ternary o-chlorotoluene (1) + tetrahydropyran (2) + N-methylformamide or N,N-dimethylformamide or cyclohexane (3) mixtures have been determined from their measured heat capacities, Cpmix\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \left( {C_{p}^{{}} } \right)_{{\text{mix}}} $$\end{document} and CpE123\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \left( {C_{p}^{\text{E}} } \right)_{123} $$\end{document}, at 298.15, 303.15 and 308.15 K. The CpE12\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \left( {C_{p}^{\text{E}} } \right)_{12} $$\end{document} and CpE123\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \left( {C_{p}^{\text{E}} } \right)_{123} $$\end{document} values have been correlated using the Redlich–Kister equation to show their dependence on composition. The excess heat capacities, CpE12\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \left( {C_{p}^{\text{E}} } \right)_{12} $$\end{document}, give information about the degree of non-randomness in the mixture. In this context, non-randomness contributes positively to CpE12\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \left( {C_{p}^{\text{E}} } \right)_{12} $$\end{document} whereas randomness results in negative CpE12\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \left( {C_{p}^{\text{E}} } \right)_{12} $$\end{document} values. The connectivity parameters of third degree, 3ξ, of the constituent molecules, which in turn deal with topology, have been utilized (Graph theory) to compute CpE12\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \left( {C_{p}^{\text{E}} } \right)_{12} $$\end{document} and CpE123\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \left( {C_{p}^{\text{E}} } \right)_{123} $$\end{document} values of the investigated mixtures. The experimental CpE12\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \left( {C_{p}^{\text{E}} } \right)_{12} $$\end{document} and CpE123\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \left( {C_{p}^{\text{E}} } \right)_{123} $$\end{document} values compare well with those calculated from Graph theory. The excess heat capacities, CpE12\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \left( {C_{p}^{\text{E}} } \right)_{12} $$\end{document} and CpE123\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \left( {C_{p}^{\text{E}} } \right)_{123} $$\end{document} of binary and ternary mixtures have also been analyzed in terms of Flory’s theory.