The strongly irreducible operators in nest algebras

被引:0
作者
You Qing Ji
Chun Lan Jiang
Zong Yao Wang
机构
[1] Jilin University,Department of Mathematics
[2] East China University of Science and Technology,Department of Mathematics
来源
Integral Equations and Operator Theory | 1997年 / 28卷
关键词
47A05;
D O I
暂无
中图分类号
学科分类号
摘要
An operatorT on\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{H}$$ \end{document} is called strongly irreducible ifT does not commute with any nontrivial idempotent operator. In this paper, we first show that each nest algebra τ(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{N}$$ \end{document}) has strongly irreducible operators. Secondly, we obtain a characterization of operators which can be uniquely written as a direct sum of finitely many strongly irreducible operators. Finally, we characterize the strongly irreducibility of operators in a nest algebra τ(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{N}$$ \end{document}).
引用
收藏
页码:28 / 44
页数:16
相关论文
共 13 条
  • [1] Barria J.(1984)Unicellar operators Trans. Amer. Math. Soc. 284 229-246
  • [2] Davidson K.R.(1949)Les operateurs permutables a loperateur integral, Fas. 2 Portugal Math. 8 73-84
  • [3] Dixmier J.(1981)A note on the range of the operator Illinois J. Math. 25 112-124
  • [4] Fialkow L.A.(1993)Approximation by Jordan type operators Houston J. Math. 19 51-62
  • [5] Fong C.K.(1972)Strong reducibility of operators Ind. Univ. Math. J. 22 393-397
  • [6] Jiang C.L.(1980)An invariant subspace lattice of order type Proc. Amer. Math. 79 45-49
  • [7] Gilfeather F.(1990)+1 Mich. Math. J. 37 283-291
  • [8] Harrison K.J.(1994)Limits of strongly irreducible operators and the Riesz decomposition theorem J. Operator Theory 32 77-89
  • [9] Longstaff W.E.(1985)Similarity Reducibility and Approximation of the Cowen-Douglas operators Zapiski Nauk. Sem. Lomi. 141 100-143
  • [10] Herrero D.A.(undefined)Invariant subspaces of weighted shift operators undefined undefined undefined-undefined