Estimating the Lorenz curve and Gini index with right censored data: A Polya tree approach

被引:4
作者
Gigliarano C. [1 ]
Muliere P. [2 ]
机构
[1] Department of Economics and Social Sciences, Università Politecnica delle Marche, 60121 Ancona, Piazzale Martelli
[2] Department of Decision Sciences, Bocconi University, Milan
关键词
Bayesian nonparametrics; Gini coefficient; Lorenz curve; Right censored data;
D O I
10.1007/s40300-013-0009-9
中图分类号
学科分类号
摘要
In this paper we estimate income distributions, Lorenz curves and the related Gini index using a Bayesian nonparametric approach based on Polya tree priors. In particular, we propose an alternative approach for dealing with contaminated observations and extreme income values: avoiding the common practise that removes these critical data, we instead treat them as censored observations and apply a Polya tree model for incomplete data. The proposed method is illustrated through an empirical application based on the European Survey on Income Living Conditions data. © Sapienza Università di Roma 2013.
引用
收藏
页码:105 / 122
页数:17
相关论文
共 35 条
  • [1] Blum J., Susarla V., On the posterior distribution of a dirichlet process given randomly right censored observations, Stoch. Process. Appl., 5, pp. 207-211, (1977)
  • [2] Burkhauser R.V., Feng S., Jenkins S., Larrimore J., Estimating trends in US income inequality using the current population survey: The importance of controlling for censoring, J. Econ. Inequal., 9, pp. 393-415, (2011)
  • [3] Chotikapanich D., Griffiths W., Estimating lorenz curves using dirichlet distribution, J. Bus. Econ. Stat., 20, pp. 290-295, (2002)
  • [4] Cowell F., Flaichaire E., Income distribution and inequality measurement: The problem of extreme values, J. Econom., 141, pp. 1044-1072, (2007)
  • [5] Cowell F., Victoria Feser M.P., Statistical Inference for Lorenz Curves with Censored Data, (1998)
  • [6] Cowell F., Victoria-Feser M.P., Distributional dominance with trimmed data, J. Bus. Econ. Stat., 24, pp. 291-300, (2006)
  • [7] De Finetti B., Il problema della perequazione, Atti della Società Italiana Per Il Progresso Delle Scienze, (1935)
  • [8] Doksum K.A., Tailfree and neutral random probabilities and their posterior distributions, Ann. Probab., 2, pp. 183-201, (1974)
  • [9] Fabius J., Asymptotic behavior of bayes estimate, Ann. Math. Stat., 35, pp. 846-856, (1964)
  • [10] Ferguson T.S., A Bayesian analysis on some nonparametric problems, Ann. Stat., 1, pp. 209-230, (1973)