Hardy-Sobolev-Rellich, Hardy-Littlewood-Sobolev and Caffarelli-Kohn-Nirenberg Inequalities on General Lie Groups

被引:0
作者
Ruzhansky, Michael [1 ,2 ]
Yessirkegenov, Nurgissa [3 ,4 ]
机构
[1] Univ Ghent, Dept Math Anal Log & Discrete Math, Ghent, Belgium
[2] Queen Mary Univ London, Sch Math Sci, London, England
[3] SDU Univ, Kaskelen 040900, Kazakhstan
[4] Inst Math & Math Modeling Almaty, Alma Ata, Kazakhstan
基金
英国工程与自然科学研究理事会;
关键词
Sobolev spaces; Sobolev embeddings; Hardy inequality; Rellich inequality; Hardy-Littlewood-Sobolev inequality; Caffarelli-Kohn-Nirenberg inequality; Lie groups; SPACES;
D O I
10.1007/s12220-024-01614-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish a number of geometrical inequalities such as Hardy, Sobolev, Rellich, Hardy-Littlewood-Sobolev, Caffarelli-Kohn-Nirenberg, Gagliardo-Nirenberg inequalities and their critical versions for an ample class of sub-elliptic differential operators on general connected Lie groups, which include both unimodular and non-unimodular cases in compact and noncompact settings. We also obtain the corresponding uncertainty type principles.
引用
收藏
页数:28
相关论文
共 24 条
  • [1] The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups
    Agrachev, Andrei
    Boscain, Ugo
    Gauthier, Jean-Paul
    Rossi, Francesco
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (08) : 2621 - 2655
  • [2] Avetisyan Z., 2024, J. Math. Sci. (N.Y.), V280, P73
  • [3] The Sobolev embedding constant on Lie groups
    Bruno, Tommaso
    Peloso, Marco M.
    Vallarino, Maria
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 216
  • [4] Sobolev spaces on Lie groups: Embedding theorems and algebra properties
    Bruno, Tommaso
    Peloso, Marco M.
    Tabacco, Anita
    Vallarino, Maria
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (10) : 3014 - 3050
  • [5] Hardy and uncertainty inequalities on stratified Lie groups
    Ciatti, Paolo
    Cowling, Michael G.
    Ricci, Fulvio
    [J]. ADVANCES IN MATHEMATICS, 2015, 277 : 365 - 387
  • [6] Sobolev algebras on Lie groups and Riemannian manifolds
    Coulhon, T
    Russ, E
    Tardivel-Nachef, V
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2001, 123 (02) : 283 - 342
  • [7] Fischer V, 2016, PROG MATH, V314, P1, DOI 10.1007/978-3-319-29558-9
  • [8] SOBOLEV SPACES ON GRADED LIE GROUPS
    Fischer, Veronique
    Ruzhansky, Michael
    [J]. ANNALES DE L INSTITUT FOURIER, 2017, 67 (04) : 1671 - 1723
  • [9] FOLLAND GB, 1975, ARK MAT, V13, P161, DOI 10.1007/BF02386204
  • [10] GUIVARCH Y, 1973, B SOC MATH FR, V101, P333