Coexistence of small and large amplitude limit cycles of polynomial differential systems of degree four

被引:0
作者
Eduardo Sáez
Eduardo Stange
Iván Szántó
机构
[1] Universidad Técnica Federico Santa María,Departamento de Matemática
[2] Universidad de Valparaíso,Instituto de Matemáticas y Física
来源
Czechoslovak Mathematical Journal | 2007年 / 57卷
关键词
stability; limit cycle; center; bifurcation;
D O I
暂无
中图分类号
学科分类号
摘要
A class of degree four differential systems that have an invariant conic x2 + Cy2 = 1, C ∈ ℝ, is examined. We show the coexistence of small amplitude limit cycles, large amplitude limit cycles, and invariant algebraic curves under perturbations of the coefficients of the systems.
引用
收藏
页码:105 / 114
页数:9
相关论文
共 54 条
[1]  
Bautin N. N.(1952)On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus Mat. Sbornik 30 181-196
[2]  
Bendixson I.(1900)Sur les courbes définies par des équations différentielles Acta Math. 24 1-88
[3]  
Coppel W. A.(1989)Some quadratics systems with at most one limit cycle Dynam. report. Expositions Dynam. Systems (N.S.) 2 61-88
[4]  
Cozma D.(1999)The solution of the problem of center for cubic differential systems with four invariant straight lines An. Stiint. Univ. Al. I. Cuza Iasi, Ser. Nuova, Mat. 44 517-530
[5]  
Suba A.(2001)Solution of the problem of center for a cubic differential systems with three invariant straight lines Qual. Theory Dyn. Syst. 2 129-143
[6]  
Cozma D.(2004)Coexistence of limit cycles and invariant algebraic curves on a Kukles systems Nonlinear Anal., Theory Methods Appl. 59 673-693
[7]  
Suba A.(1979)Relative position and number of limit cycles of a quadratic differential system Acta Math. Sin. 22 751-758.
[8]  
Chavarriga J.(1972)The limit cycles of some differential equations Differ. Uravn. 8 924-929
[9]  
Sáez E.(1989)Quadratic systems having a parabola as an integral curve Proc. R. Soc. Edinb. Sect. A 112 113-134
[10]  
Szántó I.(1989)Closed orbits and straight line invariants in Acta Mathematica Sci. 9 251-261