\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 2 $\end{document} AdS supergravity and supercurrents

被引:0
作者
Daniel Butter
Sergei M. Kuzenko
机构
[1] The University of Western Australia,School of Physics M013
关键词
Extended Supersymmetry; Superspaces; Supergravity Models;
D O I
10.1007/JHEP07(2011)081
中图分类号
学科分类号
摘要
We consider the minimal off-shell formulation for four-dimensional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 2 $\end{document} supergravity with a cosmological term, in which the second compensator is an improved tensormultiplet. We use it to derive a linearized supergravity action (and its dual versions) around the anti-de Sitter (AdS) background in terms of three \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 2 $\end{document} off-shell multiplets: an unconstrained scalar superfield, vector and tensor multiplets. This allows us to deduce the structure of the supercurrent multiplet associated with those supersymmetric theories which naturally couple to the supergravity formulation chosen, with or without a cosmological term. Finally, our linearized \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 2 $\end{document} AdS supergravity action is reduced to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 1 $\end{document} superspace. The result is a sum of two \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 1 $\end{document} linearized actions describing (i) old minimal supergravity; and (ii) an off-shell massless gravitino multiplet. We also derive dual formulations for the massless \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 1 $\end{document} gravitino multiplet in AdS. As a by-product of our consideration, we derive the consistent supergravity extension of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 1 $\end{document} supercurrent multiplet advocated recently by Komargodski and Seiberg.
引用
收藏
相关论文
共 153 条
[1]  
Ferrara S(1975)Transformation properties of the supercurrent Nucl. Phys. B 87 207-undefined
[2]  
Zumino B(2010)N =2 supergravity and supercurrents JHEP 12 080-undefined
[3]  
Butter D(1983)The improved tensor multiplet in N =2 supergravity Nucl. Phys. B 219 143-undefined
[4]  
Kuzenko SM(1979)The multiplet of currents for N =2 extended supersymmetry Phys. Lett. B 81 8-undefined
[5]  
de Wit B(2000)Correlation functions of conserved currents in N =2 superconformal theory Class. Quant. Grav. 17 665-undefined
[6]  
Philippe R(2011)New higher-derivative couplings in 4D N =2 supergravity JHEP 03 047-undefined
[7]  
Van Proeyen A(2008)4D N =2 supergravity and projective superspace JHEP 09 051-undefined
[8]  
Sohnius MF(2009)On conformal supergravity and projective superspace JHEP 08 023-undefined
[9]  
Kuzenko SM(2009)On N =2 supergravity and projective superspace: dual formulations Nucl. Phys. B 810 135-undefined
[10]  
Theisen S(2009)Different representations for the action principle in 4D N =2 supergravity JHEP 04 007-undefined