Weighted estimates for maximal bilinear rough singular integrals via sparse dominations

被引:0
作者
Zhidan Wang
Qingying Xue
Xinchen Duan
机构
[1] School of Mathematical Sciences,
[2] Beijing Normal University,undefined
[3] Laboratory of Mathematics and Complex Systems,undefined
[4] Ministry of Education,undefined
来源
Collectanea Mathematica | 2022年 / 73卷
关键词
Sparse domination; Bilinear maximal singular integrals; weights; Primary 42B20; Secondary 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
Let x=(x1,x2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=(x_1,x_2)$$\end{document} with x1,x2∈Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_1,x_2 \in \mathbb {R}^n$$\end{document} and let K(x)=Ω(x/|x|)|x|-2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K(x)={\Omega \big ({x}/{|x|}\big )}{\big |x\big |^{-2n}}$$\end{document}, where Ω∈L∞(S2n-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \in L^{\infty }(\mathbb {S}^{2n-1})$$\end{document} and satisfies ∫S2n-1Ω=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int _{\mathbb {S}^{2n-1}}\Omega =0$$\end{document}. We show that the maximal truncated bilinear singular integrals with rough kernel K(x1,x2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K(x_1,x_2)$$\end{document} satisfy a sparse bound by (p, p, p)-averages for all p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1$$\end{document}. As consequences, we obtain some quantitative weighted estimates for these rough singular integrals. A pointwise sparse domination for commutators of bilinear rough singular integrals were also established, which can be used to establish some weighted inqualities.
引用
收藏
页码:55 / 73
页数:18
相关论文
empty
未找到相关数据