Two new extragradient methods for solving equilibrium problems

被引:0
|
作者
Habib ur Rehman
Aviv Gibali
Poom Kumam
Kanokwan Sitthithakerngkiet
机构
[1] King Mongkut’s University of Technology Thonburi (KMUTT),Fixed Point Research Laboratory, Fixed Point Theory and Applications Research Group, Center of Excellence in Theoretical and Computational Science (TaCS
[2] ORT Braude College,CoE), Faculty of Science
[3] The Center for Mathematics and Scientific Computation,Department of Mathematics
[4] U. Haifa,Center of Excellence in Theoretical and Computational Science (TaCS
[5] Mt. Carmel,CoE), Faculty of Science
[6] King Mongkut.s University of Technology Thonburi (KMUTT),Department of Medical Research
[7] China Medical University Hospital,Department of Mathematics, Faculty of Applied Science, Intelligent and Nonlinear Dynamic Innovations Research Center
[8] China Medical University,undefined
[9] King Mongkut’s University of Technology North Bangkok (KMUTNB),undefined
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2021年 / 115卷
关键词
Strong convergence; Lipschitz-type constants; Equilibrium problem; Variational inequalities; Fixed point problems; 65Y05; 65K15; 68W10; 47H05; 47H10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we are concern with the classical equilibrium problem in real Hilbert spaces and introduce two new extragradient variants for it. By taking into account several fixed point theory techniques, we obtain simple structure methods that converge strongly and hence demonstrate the theoretical advantage of our methods. Moreover, our convergence assumptions are weaker than those assumed in related works in the literature. Primary numerical examples with comparisons illustrate the behaviour of our proposed scheme and show its advantages.
引用
收藏
相关论文
共 50 条
  • [1] Two new extragradient methods for solving equilibrium problems
    Rehman, Habib Ur
    Gibali, Aviv
    Kumam, Poom
    Sitthithakerngkiet, Kanokwan
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (02)
  • [2] New extragradient methods for solving equilibrium problems in Banach spaces
    Van Hieu, Dang
    Muu, Le Dung
    Quy, Pham Kim
    Duong, Hoang Ngoc
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 15 (01)
  • [3] New extragradient methods for solving equilibrium problems in Banach spaces
    Dang Van Hieu
    Le Dung Muu
    Pham Kim Quy
    Hoang Ngoc Duong
    Banach Journal of Mathematical Analysis, 2021, 15
  • [4] A FAMILY OF EXTRAGRADIENT METHODS FOR SOLVING EQUILIBRIUM PROBLEMS
    Thi Phuong Dong Nguyen
    Jean Jacques Strodiot
    Thi Thu Van Nguyen
    Van Hien Nguyen
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2015, 11 (02) : 619 - 630
  • [5] New Explicit Extragradient Methods for Solving a Class of Bilevel Equilibrium Problems
    P. N. Anh
    D. D. Thanh
    N. K. Linh
    H. P. Tu
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 3285 - 3305
  • [6] New Explicit Extragradient Methods for Solving a Class of Bilevel Equilibrium Problems
    Anh, P. N.
    Thanh, D. D.
    Linh, N. K.
    Tu, H. P.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (05) : 3285 - 3305
  • [7] New subgradient extragradient methods for solving monotone bilevel equilibrium problems
    Pham Ngoc Anh
    Le Thi Hoai An
    OPTIMIZATION, 2019, 68 (11) : 2097 - 2122
  • [8] Extragradient subgradient methods for solving bilevel equilibrium problems
    Tadchai Yuying
    Bui Van Dinh
    Do Sang Kim
    Somyot Plubtieng
    Journal of Inequalities and Applications, 2018
  • [9] Inertial Extragradient Methods for Solving Split Equilibrium Problems
    Suantai, Suthep
    Petrot, Narin
    Khonchaliew, Manatchanok
    MATHEMATICS, 2021, 9 (16)
  • [10] Extragradient subgradient methods for solving bilevel equilibrium problems
    Yuying, Tadchai
    Bui Van Dinh
    Kim, Do Sang
    Plubtieng, Somyot
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,