Stability of the magnetic Couette-Taylor flow

被引:0
|
作者
B. Scarpellini
机构
[1] Universität Basel,Mathematisches Institut
关键词
35Q30; 35Q35; 76E07; 76E25; Magnetic Couette-Taylor problem; Ljapounov stability; Bloch space; small data techniques;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the magnetic Couette-Taylor problem, that is, a conducting fluid between two infinite rotating cylinders, subject to a magnetic field parallel to the rotation axis. This configuration admits an equilibrium solution of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ (0,ar + br^{{ - 1}} ,0,0,0,\alpha + \beta \log r). $ \end{document} It is shown that this equilibrium is Ljapounov stable under small perturbations in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{L}^{2} (\Gamma ), $ \end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \Gamma = \{ (r,\varphi ,z)/r_{1} < r < r_{2} ,\varphi \in [0,2\pi ],z \in \mathbb{R}\} , $ \end{document} provided that the parameters a, b, α, β are small. The methods of proof are a combination of an energy method, based on Bloch space analysis and small data techniques.
引用
收藏
页码:412 / 438
页数:26
相关论文
共 50 条
  • [21] Bubble capture and migration in Couette-Taylor flow
    Ecole Navale, Brest, France
    Exp Fluids, 3 (233-239):
  • [22] Scalings and structures in turbulent Couette-Taylor flow
    She, Z.-S.
    Ren, K.
    Lewis, G.S.
    Swinney, H.L.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (1 II): : 1 - 016308
  • [23] Vortex pairs in viscoelastic Couette-Taylor flow
    Lange, M.
    Eckhardt, B.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (2 II): : 273011 - 273014
  • [24] Spectral galerkin approximation of couette-taylor flow
    Wang He-yuan
    Li Kai-tai
    Applied Mathematics and Mechanics, 2004, 25 (10) : 1184 - 1193
  • [25] THE COUETTE-TAYLOR PROBLEM
    TAGG, R
    NONLINEAR SCIENCE TODAY, 1994, 4 (03): : 1 - +
  • [26] Vortex pairs in viscoelastic Couette-Taylor flow
    Lange, M
    Eckhardt, B
    PHYSICAL REVIEW E, 2001, 64 (02):
  • [27] NONPROPAGATING OSCILLATORY MODES IN COUETTE-TAYLOR FLOW
    ZHANG, LH
    SWINNEY, HL
    PHYSICAL REVIEW A, 1985, 31 (02): : 1006 - 1009
  • [28] Analysis of the flow pattern modifications in a bubbly Couette-Taylor flow
    Mehel, A.
    Gabillet, C.
    Djeridi, H.
    PHYSICS OF FLUIDS, 2007, 19 (11)
  • [29] Variations in driving torque in Couette-Taylor flow subject to a vertical magnetic field
    Kaneda, M.
    Tagawa, T.
    Noir, J.
    Aurnou, J. M.
    14TH INTERNATIONAL COUETTE TAYLOR WORKSHOP, 2005, 14 : 42 - 47
  • [30] COUETTE-TAYLOR STATIONARY FLOW OF A POLYMER-SOLUTION
    ROESNER, K
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1985, 301 (20): : 1387 - 1390