On mutually unbiased unitary bases in prime-dimensional Hilbert spaces

被引:0
作者
Rinie N. M. Nasir
Jesni Shamsul Shaari
Stefano Mancini
机构
[1] International Islamic University Malaysia (IIUM),Faculty of Science
[2] University Putra Malaysia (UPM),Institute of Mathematical Research (INSPEM)
[3] University of Camerino,School of Science and Technology
[4] INFN Sezione di Perugia,undefined
来源
Quantum Information Processing | 2019年 / 18卷
关键词
Foundations of quantum mechanics; Mutually unbiased bases (MUBs); Mutually unbiased unitary bases (MUUBs);
D O I
暂无
中图分类号
学科分类号
摘要
Akin to the idea of complete sets of mutually unbiased bases for prime-dimensional Hilbert spaces, Hd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}_d$$\end{document}, we study its analogue for a d-dimensional subspace of M(d,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M (d,\mathbb {C})$$\end{document}, i.e. mutually unbiased unitary bases (MUUBs) comprising of unitary operators. We note an obvious isomorphism between the vector spaces and beyond that, we define a relevant monoid structure for Hd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}_d$$\end{document} isomorphic to one for the subspace of M(d,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M (d,\mathbb {C})$$\end{document}. This provides us not only with the maximal number of such MUUBs, but also a recipe for its construction.
引用
收藏
相关论文
共 36 条
  • [1] Schwinger J(1960)Unitary operator bases Proc. Nat. Acad. Sci. USA 46 570-579
  • [2] Alltop WO(1980)Complex sequences with low periodic correlations IEEE Trans. Inf. Theory 26 350-354
  • [3] Ivanović ID(1981)Geometrical description of quantal state determination J. Phys. A 14 3241-3245
  • [4] Wootters WK(1989)Optimal state-determination by mutually unbiased measurements Ann. Phys. 191 363-381
  • [5] Fields BD(2002)A new proof of the existence of mutually unbiased bases Algorithmica 34 512-528
  • [6] Bandyopadhyay S(2010)On mutually unbiased bases Int. J. Quantum Inf. 8 535-640
  • [7] Boykin PO(2016)Mutually unbiased unitary bases Phys. Rev. A 94 052328-177
  • [8] Roychowdhury V(2008)Optimizing quantum process tomography with unitary 2-designs J. Phys. A 41 055308-1899
  • [9] Vatan F(2006)A concise guide to complex Hadamard matrices Open Syst. Inf. Dyn. 13 133-undefined
  • [10] Durt T(2000)Bell measurements and observables Phys. Lett. A 272 32-undefined