共 22 条
Restricted Weak Upper Semi-continuity of Subdifferentials of Convex Functions on Banach Spaces
被引:0
作者:
Xi Yin Zheng
Kung Fu Ng
机构:
[1] Yunnan University,Department of Mathematics
[2] The Chinese University of Hong Kong,Department of Mathematics
来源:
Set-Valued Analysis
|
2008年
/
16卷
关键词:
Convex function;
Subdifferential;
Fréchet differentiability;
Asplund space;
46B10;
49J50;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let X be a Banach space and f a continuous convex function on X. Suppose that for each x ∈ X and each weak neighborhood V of zero in X* there exists δ > 0 such that
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\partial f(y)\subset\partial f(x)+V\;\;{\rm for\;all}\;y\in X\;{\rm with}\;\|y-x\|<\delta. $$\end{document}Then every continuous convex function g with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$g \leqslant f$\end{document} on X is generically Fréchet differentiable. If, in addition, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\lim\limits_{\|x\|\rightarrow\infty}f(x)=\infty$\end{document}, then X is an Asplund space.
引用
收藏
页码:245 / 255
页数:10
相关论文
共 22 条