Restricted Weak Upper Semi-continuity of Subdifferentials of Convex Functions on Banach Spaces

被引:0
|
作者
Xi Yin Zheng
Kung Fu Ng
机构
[1] Yunnan University,Department of Mathematics
[2] The Chinese University of Hong Kong,Department of Mathematics
来源
Set-Valued Analysis | 2008年 / 16卷
关键词
Convex function; Subdifferential; Fréchet differentiability; Asplund space; 46B10; 49J50;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a Banach space and f a continuous convex function on X. Suppose that for each x ∈ X and each weak neighborhood V of zero in X* there exists δ > 0 such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial f(y)\subset\partial f(x)+V\;\;{\rm for\;all}\;y\in X\;{\rm with}\;\|y-x\|<\delta. $$\end{document}Then every continuous convex function g with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g \leqslant f$\end{document} on X is generically Fréchet differentiable. If, in addition, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lim\limits_{\|x\|\rightarrow\infty}f(x)=\infty$\end{document}, then X is an Asplund space.
引用
收藏
页码:245 / 255
页数:10
相关论文
共 22 条
  • [1] Restricted weak upper semi-continuity of subdifferentials of convex functions on Banach spaces
    Zheng, Xi Yin
    Ng, Kung Fu
    SET-VALUED ANALYSIS, 2008, 16 (2-3): : 245 - 255
  • [2] A generalized sequential formula for subdifferentials of sums of convex functions defined on banach spaces
    Thibault, L
    RECENT DEVELOPMENTS IN OPTIMIZATION, 1995, 429 : 340 - 345
  • [3] Subdifferentials of perturbed distance functions in Banach spaces
    Jin-Hua Wang
    Chong Li
    Hong-Kun Xu
    Journal of Global Optimization, 2010, 46 : 489 - 501
  • [4] Subdifferentials of perturbed distance functions in Banach spaces
    Wang, Jin-Hua
    Li, Chong
    Xu, Hong-Kun
    JOURNAL OF GLOBAL OPTIMIZATION, 2010, 46 (04) : 489 - 501
  • [5] Limiting subdifferentials of perturbed distance functions in Banach spaces
    Meng, Li
    Li, Chong
    Yao, Jen-Chih
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (03) : 1483 - 1495
  • [6] UNIFORMLY CONVEX FUNCTIONS ON BANACH SPACES
    Borwein, J.
    Guirao, A. J.
    Hajek, P.
    Vanderwerff, J.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (03) : 1081 - 1091
  • [7] Global Approximation of Convex Functions by Differentiable Convex Functions on Banach Spaces
    Azagra, Daniel
    Mudarra, Carlos
    JOURNAL OF CONVEX ANALYSIS, 2015, 22 (04) : 1197 - 1205
  • [8] Approximation of lipschitz functions by Δ-convex functions in banach spaces
    Manuel Cepedello Boiso
    Israel Journal of Mathematics, 1998, 106 : 269 - 284
  • [9] Approximation of convex functions on the dual of Banach spaces
    Cheng, LX
    Ruan, YB
    Teng, YM
    JOURNAL OF APPROXIMATION THEORY, 2002, 116 (01) : 126 - 140
  • [10] REMARKS ON THE CONTINUITY OF CONVEX FUNCTIONS IN GEODESIC SPACES
    Lopez-Acedo, Genaro
    Nicolae, Adriana
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2024, 63 (01) : 299 - 307