Restricted Weak Upper Semi-continuity of Subdifferentials of Convex Functions on Banach Spaces

被引:0
作者
Xi Yin Zheng
Kung Fu Ng
机构
[1] Yunnan University,Department of Mathematics
[2] The Chinese University of Hong Kong,Department of Mathematics
来源
Set-Valued Analysis | 2008年 / 16卷
关键词
Convex function; Subdifferential; Fréchet differentiability; Asplund space; 46B10; 49J50;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a Banach space and f a continuous convex function on X. Suppose that for each x ∈ X and each weak neighborhood V of zero in X* there exists δ > 0 such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial f(y)\subset\partial f(x)+V\;\;{\rm for\;all}\;y\in X\;{\rm with}\;\|y-x\|<\delta. $$\end{document}Then every continuous convex function g with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g \leqslant f$\end{document} on X is generically Fréchet differentiable. If, in addition, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lim\limits_{\|x\|\rightarrow\infty}f(x)=\infty$\end{document}, then X is an Asplund space.
引用
收藏
页码:245 / 255
页数:10
相关论文
共 35 条
[1]  
Asplund E.(1968)Fréchet differentiability of convex functions Acta Math. 121 31-47
[2]  
Borwein J.M.(1987)A smooth variational principle with applications to subdifferentiability and differentiability of convex functions Trans. Amer. Math. Soc. 303 517-527
[3]  
Preiss D.(1994)On upper semicontinuity of duality mapping Proc. Amer. Math. Soc. 121 451-459
[4]  
Contreras M.D.(1974)On vector measures Trans. Amer. Math. Soc. 198 253-271
[5]  
Paya R.(1976)Generic Fréchet differentiability and perturbed optimization problems in Banach spaces Trans. Amer. Math. Soc. 224 193-216
[6]  
Diestel J.(1986)Subdiffrentials, local J. London Math. Soc. 34 568-576
[7]  
Faires B.(1998)-supports and Asplund spaces Set-Valued Anal. 6 381-406
[8]  
Ekeland I.(1993)Nonsmooth characterizations of Asplund spaces and smooth variational principles Boll. Un. Mat. Ital. VII 45-70
[9]  
Lebourg G.(1995)Banach spaces with strongly subdifferentiable norm Bull. Austral. Math. Soc. 52 161-167
[10]  
Fabian M.(1996)Separable determination of Fréchet differentiability of convex functions Set-Valued Anal. 4 25-39