Moore–Gibson–Thompson equation with memory, part I: exponential decay of energy

被引:1
作者
Irena Lasiecka
Xiaojun Wang
机构
[1] University of Memphis,Department of Mathematical Sciences
[2] IBS,undefined
[3] Polish Academy of Sciences,undefined
来源
Zeitschrift für angewandte Mathematik und Physik | 2016年 / 67卷
关键词
Moore–Gibson–Thompson (MGT) equation; High-frequency ultrasound waves; Memory; Damping; Multipliers; Energy estimate; Exponential decay; 35Q70; 35L05; 74D99;
D O I
暂无
中图分类号
学科分类号
摘要
We are interested in the Moore–Gibson–Thompson equation with memory τuttt+αutt+c2Au+bAut-∫0tg(t-s)Aw(s)ds=0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau{u}_{ttt}+ \alpha u_{tt}+c^{2}\mathcal{A}u+b\mathcal{A}u_t -\int_0^{t}g(t-s)\mathcal{A} w(s){\rm {d}}s=0.$$\end{document}This model arises in high-frequency ultrasound applications accounting for thermal flux and molecular relaxation times. According to revisited extended irreversible thermodynamics, thermal flux relaxation leads to the third-order derivative in time while molecular relaxation leads to non-local effects governed by memory terms. The resulting model is of hyperbolic type with viscous effects. We first classify the memory into three types. Then, we study how a memory term creates damping mechanism and how the memory causes energy decay even in the cases when the original memoryless system is unstable.
引用
收藏
相关论文
共 43 条
[1]  
Alabau-Boussouira F.(2008)Decay estimates for second order evolution equations with memory J Funct. Anal. 254 1342-1372
[2]  
Cannarsa P.(2009)A general method for proving sharp energy decay rates for memory-dissipative evolution equations C. R. Acad. Sci. Paris Ser. I 347 867-872
[3]  
Sforza D.(2010)A unified approach via convexity for optimal energy decay rates of finite and infinite dimensional vibrating damped systems with applications to semi-discretized vibrating damped systems J Differ. Equ. 248 1473-1517
[4]  
Alabau-Boussouira F.(2015)Existence and sharp decay rate estimates for a von Karman system with long memory Nonlinear Anal. Real World Appl. 22 289-306
[5]  
Cannarsa P.(2008)General decay rate estimates for viscoelastic dissipative systems Nonlinear Anal. 68 177-193
[6]  
Alabau-Boussouira F.(2003)Frictional versus viscoelastic damping in a semilinear wave equation SIAM J. Control Optim. 42 1310-1324
[7]  
Cavalcanti M.M.(1979)Model equations of nonlinear acoustics Annu. Rev. Fluid Mech. 11 1133-308
[8]  
Cavalcanti A.D.D.(1970)Asymptotic stability in viscoelasticity Arch. Rat. Mech. Anal. 37 297-1264
[9]  
Lasiecka I.(2002)Asymptotic decay for some differential systems with fading memory Appl. Anal. 81 1245-207
[10]  
Wang X.(2010)General decay rates of energy for the second order evolutions equations with memory Acta Appl. Math. 110 195-988