Study on the Difference Between the Triple-Point Temperatures of 20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{20}$$\end{document}Ne and 22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{22}$$\end{document}Ne Using Sealed Cells

被引:0
作者
T. Nakano
O. Tamura
P. P. M. Steur
F. Pavese
机构
[1] AIST,National Metrology Institute of Japan (NMIJ)
[2] Istituto Nazionale di Ricerca Metrologica (INRiM),undefined
[3] Affiliated Scientist to the Instytut Niskich Temperatur i Badan Strukturalnych (INTiBS),undefined
关键词
Fixed points; Isotopes; ITS-90; Neon; Subrange inconsistency; Triple point;
D O I
10.1007/s10765-014-1697-y
中图分类号
学科分类号
摘要
At the National Metrology Institute of Japan (NMIJ), the triple points of 20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{20}$$\end{document}Ne and 22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{22}$$\end{document}Ne were realized using modular sealed cells, manufactured by the Istituto Nazionale di Ricerca Metrologica (INRiM) in Italy to measure the difference of the triple-point temperatures of 20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{20}$$\end{document}Ne and 22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{22}$$\end{document}Ne. Standard platinum resistance thermometers (SPRTs) were used that were calibrated by NMIJ on the International Temperature Scale of 1990 (ITS-90). In previous reports, sealed cells of 20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{20}$$\end{document}Ne and 22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{22}$$\end{document}Ne were mounted one at a time in a cryostat and their triple points were realized in separate cool-downs (the single-cell measurement). In this study, first, the triple point was realized using the single-cell measurement for 20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{20}$$\end{document}Ne and 22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{22}$$\end{document}Ne cells. Second, the 20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{20}$$\end{document}Ne and 22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{22}$$\end{document}Ne cells were mounted together on the same copper block and their triple points were realized subsequently one after the other in the same cool-down of the cryostat (the double-cell measurement). The melting curves observed by the single-cell and the double-cell measurements were almost identical for each cell. The difference of the triple-point temperatures between the two cells, 22T-20T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{22}T -^{20}\!T$$\end{document}, was estimated, not only using the subrange of SPRTs defined in the ITS-90 from 13.8033 K to 273.16 K (subrange 1) but also that defined from 24.5561 K to 273.16 K (subrange 2). The difference in (22T-20T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(^{22}T-^{20}\!\!T)$$\end{document} between the subranges 1 and 2 is within 0.06 mK, which is caused by the subrange inconsistency in the ITS-90. The standard uncertainty in (22T-20T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(^{22}T-^{20}\!T)$$\end{document} due to the subrange inconsistency is estimated to be 0.017 mK. After correction for the effects of impurities and other isotopes in the 20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{20}$$\end{document}Ne and 22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{22}$$\end{document}Ne cells, the difference in the triple-point temperatures between pure 20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{20}$$\end{document}Ne and pure 22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{22}$$\end{document}Ne is estimated to be 0.146 64 (5) K on subrange 1, which is consistent within the uncertainty with the former studies. When 22T-20T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{22}T-^{20}\!T$$\end{document} for pure 20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{20}$$\end{document}Ne and pure 22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{22}$$\end{document}Ne is estimated on subrange 2, 22T-20T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{22}T-^{20}\!\!T$$\end{document} becomes 0.146 60 (5), which agrees very well with the former reports of INRiM evaluating 22T-20T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{22}T-^{20}\!T$$\end{document} on subrange 2.
引用
收藏
页码:1032 / 1043
页数:11
相关论文
共 28 条
[1]  
Pavese F(2010)undefined J. Chem. Thermodyn. 42 1222-undefined
[2]  
Valkiers S(2011)undefined J. Chem. Thermodyn. 43 1977-undefined
[3]  
Steur PPM(2011)undefined Int. J. Thermophys. 32 173-undefined
[4]  
Ferri D(2007)undefined Int. J. Thermophys. 28 1893-undefined
[5]  
Giraudi D(2011)undefined Int. J. Thermophys. 32 1581-undefined
[6]  
Pavese F(2008)undefined Int. J. Thermophys. 29 881-undefined
[7]  
Steur PPM(2011)undefined Int. J. Thermophys. 32 1366-undefined
[8]  
Seog J(2014)undefined J. Chem. Thermodyn. 75 33-undefined
[9]  
Hill KD(2006)undefined Metrologia 43 341-undefined
[10]  
Fahr M(undefined)undefined undefined undefined undefined-undefined