Vertical GeSn nanowire MOSFETs for CMOS beyond silicon

被引:27
作者
Liu, Mingshan [1 ,2 ]
Junk, Yannik [1 ,2 ,3 ]
Han, Yi [1 ,2 ]
Yang, Dong [1 ,2 ,3 ]
Bae, Jin Hee [1 ,2 ]
Frauenrath, Marvin [4 ,5 ]
Hartmann, Jean-Michel [4 ,5 ]
Ikonic, Zoran [6 ]
Baerwolf, Florian [7 ]
Mai, Andreas [7 ]
Gruetzmacher, Detlev [1 ,2 ]
Knoch, Joachim [3 ]
Buca, Dan [1 ,2 ]
Zhao, Qing-Tai [1 ,2 ]
机构
[1] Forschungszentrum Julich, Inst Semicond Nanoelect, Peter Grunberg Inst 9 PGI 9, D-52428 Julich, Germany
[2] Forschungszentrum Julich, JARA Fundamentals Future Informat Technol, D-52428 Julich, Germany
[3] Rhein Westfal TH Aachen, Inst Semicond Elect, D-52056 Aachen, Germany
[4] CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
[5] Univ Grenoble Alpes, F-38000 Grenoble, France
[6] Univ Leeds, Pollard Inst, Sch Elect & Elect Engn, Leeds LS2 9JT, England
[7] IHP Innovat High Performance Microelect, D-15236 Frankfurt, Germany
来源
COMMUNICATIONS ENGINEERING | 2023年 / 2卷 / 01期
关键词
FIELD-EFFECT TRANSISTORS; SPEED; FILM;
D O I
10.1038/s44172-023-00059-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The continued downscaling of silicon CMOS technology presents challenges for achieving the required low power consumption. While high mobility channel materials hold promise for improved device performance at low power levels, a material system which enables both high mobility n-FETs and p-FETs, that is compatible with Si technology and can be readily integrated into existing fabrication lines is required. Here, we present high performance, vertical nanowire gate-all-around FETs based on the GeSn-material system grown on Si. While the p-FET transconductance is increased to 850 mu S/mu m by exploiting the small band gap of GeSn as source yielding high injection velocities, the mobility in n-FETs is increased 2.5-fold compared to a Ge reference device, by using GeSn as channel material. The potential of the material system for a future beyond Si CMOS logic and quantum computing applications is demonstrated via a GeSn inverter and steep switching at cryogenic temperatures, respectively.
引用
收藏
页数:9
相关论文
共 52 条
[1]  
[Anonymous], 2014, The Internet of Things
[2]   Inflection Phenomenon in Cryogenic MOSFET Behavior [J].
Beckers, Arnout ;
Jazaeri, Farzan ;
Enz, Christian .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2020, 67 (03) :1357-1360
[3]   InAs nanowire MOSFETs in three-transistor configurations: single balanced RF down-conversion mixers [J].
Berg, Martin ;
Persson, Karl-Magnus ;
Wu, Jun ;
Lind, Erik ;
Sjoland, Henrik ;
Wernersson, Lars-Erik .
NANOTECHNOLOGY, 2014, 25 (48)
[4]   Effective masses of electrons and heavy holes in InAs, InSb, GaSb, GaAs and some of their ternary compounds [J].
Bouarissa, N ;
Aourag, H .
INFRARED PHYSICS & TECHNOLOGY, 1999, 40 (04) :343-349
[5]   Intrinsic and extrinsic diffusion of phosphorus, arsenic, and antimony in germanium [J].
Brotzmann, Sergej ;
Bracht, Hartmut .
JOURNAL OF APPLIED PHYSICS, 2008, 103 (03)
[6]   High active carrier concentration in n-type, thin film Ge using delta-doping [J].
Camacho-Aguilera, Rodolfo E. ;
Cai, Yan ;
Bessette, Jonathan T. ;
Kimerling, Lionel C. ;
Michel, Jurgen .
OPTICAL MATERIALS EXPRESS, 2012, 2 (11) :1462-1469
[7]   Is negative capacitance FET a steep-slope logic switch? [J].
Cao, Wei ;
Banerjee, Kaustav .
NATURE COMMUNICATIONS, 2020, 11 (01)
[8]   Modifying Threshold Voltages to n- and p- Type FinFETs by Work Function Metal Stacks [J].
Chang, Wen-Teng ;
Li, Meng-His ;
Hsu, Chun-Hao ;
Lin, Wen-Chin ;
Yeh, Wen-Kuan .
IEEE OPEN JOURNAL OF NANOTECHNOLOGY, 2021, 2 :72-77
[9]   Sub-10-nm graphene nanoribbons with atomically smooth edges from squashed carbon nanotubes [J].
Chen, Changxin ;
Lin, Yu ;
Zhou, Wu ;
Gong, Ming ;
He, Zhuoyang ;
Shi, Fangyuan ;
Li, Xinyue ;
Wu, Justin Zachary ;
Lam, Kai Tak ;
Wang, Jian Nong ;
Yang, Fan ;
Zeng, Qiaoshi ;
Guo, Jing ;
Gao, Wenpei ;
Zuo, Jian-Min ;
Liu, Jie ;
Hong, Guosong ;
Antaris, Alexander L. ;
Lin, Meng-Chang ;
Mao, Wendy L. ;
Dai, Hongjie .
NATURE ELECTRONICS, 2021, 4 (09) :653-663
[10]   Ge N-Channel MOSFETs with ZrO2 Dielectric Achieving Improved Mobility [J].
Chou, Lulu ;
Liu, Yan ;
Xu, Yang ;
Peng, Yue ;
Liu, Huan ;
Yu, Xiao ;
Han, Genquan ;
Hao, Yue .
NANOSCALE RESEARCH LETTERS, 2021, 16 (01)