A primer of group theory for Loop Quantum Gravity and spin-foams

被引:0
作者
Pierre Martin-Dussaud
机构
[1] Aix Marseille Univ,
[2] Université de Toulon,undefined
[3] CNRS,undefined
[4] CPT,undefined
来源
General Relativity and Gravitation | 2019年 / 51卷
关键词
Loop Quantum Gravity; Spin-foam; Group theory; Representation theory; Recoupling theory;
D O I
暂无
中图分类号
学科分类号
摘要
Calculations in Loop Quantum Gravity (LQG) and spin-foams theory rely heavily on group theory of SU(2) and SL2(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SL_{2}({\mathbb {C}})$$\end{document}. Even though many monographs exist devoted to this theory, the different tools needed (e.g. representation theory, harmonic analysis, recoupling theory...) are often dispersed in different books, with different conventions and notations. This was the initial motivation for the compilation of the present document. Generally, these notes can serve three main purposes: a concise introduction for students to the essential mathematical tools of LQG, a convenient compendium for researchers, a translational hub between the conventions of the main references. These notes are aimed both at physicists, caring about their tools being mathematically well grounded, and at mathematicians, curious about how some of their familiar abstract structures can reveal the beauty of quantum gravity.
引用
收藏
相关论文
共 57 条
[11]  
Barrett JW(1947)From twistors to twisted geometries Izv. Akad. Nauk SSSR Ser. Mat. 11 411-326
[12]  
Dowdall RJ(1947)Unitary representations of the Lorentz group Proc. R. Soc. A 189 372-972
[13]  
Fairbairn WJ(1991)Infinite irreducible representations of the Lorentz group J. Pure Appl. Algebra 69 285-324
[14]  
Hellmann F(1978)A note on the real representations of SU(2, C) Rep. Math. Phys. 13 315-352
[15]  
Pereira R(2016)Clebsch–Gordan coefficients of the SL(2, C) group Phys. Rev. D 94 20-2810
[16]  
Dao VD(2012)Twisted geometries, twistors, and conformal transformations Phys. Rev. D 85 064002-1519
[17]  
Nguyen VH(1954)Twistor networks and covariant twisted geometries Dokl. Akad. Nauk SSSR 97 969-2064
[18]  
Donà P(2003)On linear representations of the proper Lorentz group Phys. Lett. B 575 318-2636
[19]  
Donà P(2008)A ‘general boundary’ formulation for quantum mechanics and quantum gravity Adv. Theor. Math. Phys. 12 319-4682
[20]  
Sarno G(1992)General boundary quantum field theory: foundations and probability interpretation Mod. Phys. Lett. A 7 2799-5054