A primer of group theory for Loop Quantum Gravity and spin-foams

被引:0
作者
Pierre Martin-Dussaud
机构
[1] Aix Marseille Univ,
[2] Université de Toulon,undefined
[3] CNRS,undefined
[4] CPT,undefined
来源
General Relativity and Gravitation | 2019年 / 51卷
关键词
Loop Quantum Gravity; Spin-foam; Group theory; Representation theory; Recoupling theory;
D O I
暂无
中图分类号
学科分类号
摘要
Calculations in Loop Quantum Gravity (LQG) and spin-foams theory rely heavily on group theory of SU(2) and SL2(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SL_{2}({\mathbb {C}})$$\end{document}. Even though many monographs exist devoted to this theory, the different tools needed (e.g. representation theory, harmonic analysis, recoupling theory...) are often dispersed in different books, with different conventions and notations. This was the initial motivation for the compilation of the present document. Generally, these notes can serve three main purposes: a concise introduction for students to the essential mathematical tools of LQG, a convenient compendium for researchers, a translational hub between the conventions of the main references. These notes are aimed both at physicists, caring about their tools being mathematically well grounded, and at mathematicians, curious about how some of their familiar abstract structures can reveal the beauty of quantum gravity.
引用
收藏
相关论文
共 57 条
[1]  
Anderson RL(1970)Clebsch-Gordan coefficients for the coupling of J. Math. Phys. 11 1050-1058
[2]  
Raczka R(1970) principal-series representations J. Math. Phys. 11 1059-1068
[3]  
Rashid MA(1974)Recursion and symmetry relations for the Clebsch-Gordan coefficients of the homogeneous Lorentz group Bull. IMA 10 232-234
[4]  
Winternitz P(1947)How research is carried out Ann. Math. 48 568-640
[5]  
Anderson RL(2010)Irreducible unitary representations of the Lorentz group Class. Quantum Gravity 27 165009-37
[6]  
Raczka R(1967)Lorentzian spin foam amplitudes: graphical calculus and asymptotics Ann. Inst. Henri Poincaré VI 17-24
[7]  
Rashid MA(2018)On the theory of unitary representations of the SL(2, C) group Class. Quantum Gravity 35 175019-149
[8]  
Winternitz P(2018)Infrared divergences in the EPRL-FK spin foam model Gen. Relativ. Gravit. 50 1-504
[9]  
Atiyah MF(2008)Numerical methods for EPRL spin foam transition amplitudes and Lorentzian recoupling theory Nucl. Phys. B B799 136-401
[10]  
Bargmann V(2010)LQG vertex with finite Immirzi parameter Phys. Rev. D Part. Fields Gravit. Cosmol. D82 84041-294