On transfer Krull monoids

被引:0
作者
Aqsa Bashir
Andreas Reinhart
机构
[1] Karl-Franzens-Universität Graz,Institut für Mathematik und Wissenschaftliches Rechnen
[2] NAWI Graz,undefined
来源
Semigroup Forum | 2022年 / 105卷
关键词
Affine; Half-factorial; Krull; Root closure; Transfer Krull;
D O I
暂无
中图分类号
学科分类号
摘要
Let H be a cancellative commutative monoid, let A(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}(H)$$\end{document} be the set of atoms of H and let H~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde{H}$$\end{document} be the root closure of H. Then H is called transfer Krull if there exists a transfer homomorphism from H into a Krull monoid. It is well known that both half-factorial monoids and Krull monoids are transfer Krull monoids. In spite of many examples and counterexamples of transfer Krull monoids (that are neither Krull nor half-factorial), transfer Krull monoids have not been studied systematically (so far) as objects on their own. The main goal of the present paper is to attempt the first in-depth study of transfer Krull monoids. We investigate how the root closure of a monoid can affect the transfer Krull property and under what circumstances transfer Krull monoids have to be half-factorial or Krull. In particular, we show that if H~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde{H}$$\end{document} is a DVM, then H is transfer Krull if and only if H⊆H~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\subseteq \widetilde{H}$$\end{document} is inert. Moreover, we prove that if H~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde{H}$$\end{document} is factorial, then H is transfer Krull if and only if A(H~)={uε∣u∈A(H),ε∈H~×}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}(\widetilde{H})=\{u\varepsilon \mid u\in \mathcal {A}(H),\varepsilon \in \widetilde{H}^{\times }\}$$\end{document}. We also show that if H~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde{H}$$\end{document} is half-factorial, then H is transfer Krull if and only if A(H)⊆A(H~)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}(H)\subseteq \mathcal {A}(\widetilde{H})$$\end{document}. Finally, we point out that characterizing the transfer Krull property is more intricate for monoids whose root closure is Krull. This is done by providing a series of counterexamples involving reduced affine monoids.
引用
收藏
页码:73 / 95
页数:22
相关论文
共 53 条
[1]  
Anderson DD(1992)Atomic domains in which almost all atoms are prime Commun. Algebra 20 1447-1462
[2]  
Anderson DF(1992)Cohen-Kaplansky domains: integral domains with a finite number of irreducible elements J. Algebra 148 17-41
[3]  
Zafrullah M(1992)Finite character representations for integral domains Boll. Unione Mat. Ital. 6 613-630
[4]  
Anderson DD(2014)Factorizations of Upper Triangular Matrices Linear Algebra Appl. 450 138-157
[5]  
Mott JL(2006)Some Diophantine equations associated to seminormal Cohen-Kaplansky domains Int. J. Math. Game Theory Algebra 15 139-153
[6]  
Anderson DD(2020)Upper triangular matrices over information algebras Linear Algebra Appl. 587 334-357
[7]  
Mott JL(2015)Factorization theory: From commutative to noncommutative settings J. Algebra 441 475-551
[8]  
Zafrullah M(2018)Arithmetical invariants of local quaternion orders Acta Arith. 186 143-177
[9]  
Bachman D(2022)Lattices over Bass rings and graph agglomerations, Algebr Represent. Theory 25 669-704
[10]  
Baeth NR(2021)On the arithmetic of stable domains Commun. Algebra 49 4763-4787