Kinetic Models of Combustion of Kerosene

被引:0
作者
Gerasimov, G. Ya. [1 ]
Levashov, V. Yu. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Inst Mech, 1 Michurin Ave, Moscow 119192, Russia
基金
俄罗斯基础研究基金会;
关键词
kerosene; hydrocarbons; combustion; kinetic models; computational fluid dynamics; jet engines; CHEMICAL-REACTION MECHANISM; LAMINAR BURNING VELOCITIES; IGNITION DELAY TIMES; SHOCK-TUBE; N-DECANE; WIDE-RANGE; JET FUEL; RP-3; KEROSENE; METHYLCYCLOHEXANE IGNITION; NUMERICAL-SIMULATION;
D O I
10.1007/s10891-024-02918-x
中图分类号
O414.1 [热力学];
学科分类号
摘要
Consideration has been given to the current status of research on the development of kinetic models of combustion of kerosene and its components. Surrogate models of kerosene have been analyzed that describe the physical and chemical properties of an actual fuel and are used in developing detailed and reduced kinetic models. Experimental data have been reviewed based on which testing of the kinetic models with a varying degree of complexity is carried out. Examples of the use of kinetic models in modeling numerically processes occurring in actual power-generating units have been given.
引用
收藏
页码:506 / 524
页数:19
相关论文
共 115 条
[1]   A new approach to formulation of complex fuel surrogates [J].
Al-Esawi, Nawar ;
Al Qubeissi, Mansour .
FUEL, 2021, 283 (283)
[2]   Laminar burning velocities of n-decane and binary kerosene surrogate mixture [J].
Alekseev, V. A. ;
Soloviova-Sokolova, J. V. ;
Matveev, S. S. ;
Chechet, I. V. ;
Matveev, S. G. ;
Konnov, A. A. .
FUEL, 2017, 187 :429-434
[3]   DETONATION REGIME IN COMBUSTION OF HEPTANE AND JET A-1 PROPELLANT IN A LESS THAN 0.5-m-LONG SMALL-SIZE COMBUSTOR [J].
Assad, M. S. ;
Penyazkov, O. G. ;
Chernukho, I. I. ;
Alhussan, Khaled .
JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS, 2021, 94 (05) :1285-1289
[4]   Experimental study and modeling of the reaction H+O2+M → HO2+M (M = Ar, N2, H2O) at elevated pressures and temperatures between 1050 and 1250 K [J].
Bates, RW ;
Golden, DM ;
Hanson, RK ;
Bowman, CT .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2001, 3 (12) :2337-2342
[5]   Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates [J].
Battin-Leclerc, F. .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2008, 34 (04) :440-498
[6]   Evaluated kinetic data for combustion modeling: Supplement II [J].
Baulch, DL ;
Bowman, CT ;
Cobos, CJ ;
Cox, RA ;
Just, T ;
Kerr, JA ;
Pilling, MJ ;
Stocker, D ;
Troe, J ;
Tsang, W ;
Walker, RW ;
Warnatz, J .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 2005, 34 (03) :757-1397
[7]   Kinetic modelling of n-decane combustion and autoignition [J].
Bikas, G ;
Peters, N .
COMBUSTION AND FLAME, 2001, 126 (1-2) :1456-1475
[8]   Direct numerical simulation of a temporally evolving air/n-dodecane jet at low-temperature diesel-relevant conditions [J].
Borghesi, Giulio ;
Krisman, Alexander ;
Lu, Tianfeng ;
Chen, Jacqueline H. .
COMBUSTION AND FLAME, 2018, 195 :183-202
[9]   Modeling of the gas-phase oxidation of cyclohexane [J].
Buda, Frederic ;
Heyberger, Barbara ;
Fournet, Rene ;
Glaude, Pierre-Alexandre ;
Warth, Valerie ;
Battin-Leclerc, Frederique .
ENERGY & FUELS, 2006, 20 (04) :1450-1459
[10]   Development of a new skeletal mechanism for n-decane oxidation under engine-relevant conditions based on a decoupling methodology [J].
Chang, Yachao ;
Jia, Ming ;
Liu, Yaodong ;
Li, Yaopeng ;
Xie, Maozhao .
COMBUSTION AND FLAME, 2013, 160 (08) :1315-1332