Weighted quasilinear eigenvalue problems in exterior domains

被引:0
作者
T. V. Anoop
Pavel Drábek
Sarath Sasi
机构
[1] University of West Bohemia,Department of Mathematics and NTIS, Faculty of Applied Sciences
来源
Calculus of Variations and Partial Differential Equations | 2015年 / 53卷
关键词
35J92; 35P30; 35A15;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the following weighted eigenvalue problem in the exterior domain: -Δpu=λK(x)|u|p-2uinB1c,u=0on∂B1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta _pu = \lambda &{}K(x) |u|^{p-2}u \quad \mathrm{in} \quad {B_1^c},\\ u = 0 &{}\quad \mathrm{on}\quad \partial B_1, \end{array}\right. } \end{aligned}$$\end{document}where Δp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _p$$\end{document} is the p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Laplace operator with p>1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1,$$\end{document} and B1c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B_1^c}$$\end{document} is the exterior of the closed unit ball in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^N$$\end{document} with N≥1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 1.$$\end{document} There is no restriction on the dimension N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} in terms of p,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p,$$\end{document} i.e., we allow both 1<p<N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1< p< N$$\end{document} and p≥N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge N$$\end{document}. The weight function K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} is locally integrable on B1c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B_1^c}$$\end{document} and is allowed to change its sign. For some appropriate choice of w\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w$$\end{document}, a positive weight function on the interval (1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1,\infty )$$\end{document}, we prove that the Beppo-Levi space D01,p(B1c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal D}^{1,p}_0(B_1^c)}$$\end{document} is compactly embedded into the weighted Lebesgue space Lp(B1c;w(|x|)).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p({B_1^c};w(|x|)).$$\end{document} The existence of the positive eigenvalue for the above problem is proved for K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} such that suppK+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^+$$\end{document} is of non-zero measure and |K|≤w\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ |K| \le w$$\end{document}. Further, we discuss the positivity, the regularity and the asymptotic behaviour at infinity of the first eigenfunctions.
引用
收藏
页码:961 / 975
页数:14
相关论文
共 41 条
[11]  
Bidaut-Véron M-F(1999)Remarks on the strong maximum principle J. Funct. Anal. 167 463-480
[12]  
Pohozaev S(1995)Image selective smoothing and edge detection by nonlinear diffusion Math. Nachr. 173 131-139
[13]  
Brezis H(1993) local regularity of weak solutions of degenerate elliptic equations Comm. Partial Differ. Equ. 18 215-240
[14]  
Ponce AC(1995)A concentration-compactness lemma with applications to singular eigenvalue problems Comment. Math. Univ. Carolin. 36 519-527
[15]  
Catté F(2007)Nonlinear eigenvalue problem for Adv. Differ. Equ. 12 407-434
[16]  
Lions P-L(1988)-Laplacian in Nonlinear Anal. 12 1203-1219
[17]  
Morel J-M(2006)Linear and semilinear eigenvalue problems in Arch. Math. (Basel) 86 79-89
[18]  
Coll T(1973)Eigenvalues of the Boll. Un. Mat. Ital. 4 285-301
[19]  
DiBenedetto E(1974)-Laplacian in C. R. Acad. Sci. Paris Sér 279 531-534
[20]  
Didier S(1998) with indefinite weight Math. Nachr. 192 205-223