Matrix models for ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\varepsilon }$$\end{document}-free independence

被引:0
作者
Ian Charlesworth
Benoît Collins
机构
[1] University of California,Department of Mathematics
[2] Berkeley,Department of Mathematics, Graduate School of Science
[3] Kyoto University,undefined
关键词
Free independence; Lambda-freeness; Random matrices; 46L54;
D O I
10.1007/s00013-020-01569-7
中图分类号
学科分类号
摘要
We investigate tensor products of random matrices, and show that independence of entries leads asymptotically to ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-free independence, a mixture of classical and free independence studied by Młotkowski and by Speicher and Wysoczański. The particular ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} arising is prescribed by the tensor product structure chosen, and conversely, we show that with suitable choices an arbitrary ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} may be realized in this way. As a result, we obtain a new proof that Rω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {R}^\omega $$\end{document}-embeddability is preserved under graph products of von Neumann algebras, along with an explicit recipe for constructing matrix models.
引用
收藏
页码:585 / 600
页数:15
相关论文
共 3 条
[1]  
Droms C(1987)Subgroups of graph groups J. Algebra 110 519-522
[2]  
Morampudi SC(2019)Many-body systems with random spatially local interactions Phys. Rev B 100 245152-undefined
[3]  
Laumann CR(undefined)undefined undefined undefined undefined-undefined