Double-soft behavior of the dilaton of spontaneously broken conformal invariance

被引:0
作者
Paolo Di Vecchia
Raffaele Marotta
Matin Mojaza
机构
[1] University of Copenhagen,The Niels Bohr Institute
[2] Nordita,Max
[3] KTH Royal Institute of Technology and Stockholm University,Planck
[4] Istituto Nazionale di Fisica Nucleare,Institut für Gravitationsphysik
[5] Sezione di Napoli,undefined
[6] Complesso Universitario di Monte S. Angelo ed. 6,undefined
[7] Albert-Einstein-Institut,undefined
来源
Journal of High Energy Physics | / 2017卷
关键词
Space-Time Symmetries; Spontaneous Symmetry Breaking; Scattering Amplitudes; Conformal Field Models in String Theory;
D O I
暂无
中图分类号
学科分类号
摘要
The Ward identities involving the currents associated to the spontaneously broken scale and special conformal transformations are derived and used to determine, through linear order in the two soft-dilaton momenta, the double-soft behavior of scattering amplitudes involving two soft dilatons and any number of other particles. It turns out that the double-soft behavior is equivalent to performing two single-soft limits one after the other. We confirm the new double-soft theorem perturbatively at tree-level in a D-dimensional conformal field theory model, as well as nonperturbatively by using the “gravity dual” of N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} super Yang-Mills on the Coulomb branch; i.e. the Dirac-Born-Infeld action on AdS5 × S5.
引用
收藏
相关论文
共 90 条
  • [1] Nielsen HB(1976)On How to Count Goldstone Bosons Nucl. Phys. B 105 445-undefined
  • [2] Chadha S(2002)Spontaneously broken space-time symmetries and Goldstone’s theorem Phys. Rev. Lett. 88 101602-undefined
  • [3] Low I(1965)Consistency conditions on the strong interactions implied by a partially conserved axial vector current Phys. Rev. 137 B1022-undefined
  • [4] Manohar AV(1966)Current-Commutator Theory of Multiple Pion Production Phys. Rev. Lett. 16 879-undefined
  • [5] Adler SL(1968)Partially conserved dilatation current Nucl. Phys. B 5 499-undefined
  • [6] Weinberg S(1970)Scale invariance, conformal invariance and the high-energy behavior of scattering amplitudes Phys. Rev. D 2 753-undefined
  • [7] Mack G(1956)On a conform-invariant spinor wave equation Nuovo Cim. 3 988-undefined
  • [8] Gross DJ(1960)The Conformal Invariance in Quantum Field Theory Nuovo Cim. 18 1086-undefined
  • [9] Wess J(1962)On the physical interpretation and representation-theoretic analysis of the conformal transformations of space and time Annalen Phys. 464 388-undefined
  • [10] Gürsey F(1962)Conformal invariance in physics Rev. Mod. Phys. 34 442-undefined