On the Representation of Finite Rings by Matrices over Commutative Rings

被引:0
|
作者
Mekei A. [1 ]
机构
[1] Institute of Mathematics, National University of Mongolia, Ulaanbaatar
关键词
Commutative Ring; Identity Element; Associative Ring; Matrix Ring; Distinguished Basis;
D O I
10.1007/s10958-014-1733-2
中图分类号
学科分类号
摘要
In this paper, it is shown that all finite associative rings satisfying the identities nx = 0 and x 3 f(x) + x 2 = 0, where n is an odd natural number and f(x) ∈ ℤ[x], are embeddable in the ring of matrices over some suitable commutative ring. © 2014 Springer Science+Business Media New York.
引用
收藏
页码:548 / 557
页数:9
相关论文
共 50 条
  • [1] ON THE REPRESENTATION OF FINITE RINGS BY MATRICES OVER COMMUTATIVE RINGS
    MALTSEV, YN
    MATHEMATICS OF THE USSR-SBORNIK, 1985, 128 (3-4): : 379 - 402
  • [2] Representation of Some Finite Rings by Matrices Over Commutative Rings
    A. Mekei
    L. Oyuuntsetseg
    Algebra and Logic, 2014, 53 : 287 - 297
  • [3] REPRESENTATION OF SOME FINITE RINGS BY MATRICES OVER COMMUTATIVE RINGS
    Mekei, A.
    Oyuuntsetseg, L.
    ALGEBRA AND LOGIC, 2014, 53 (04) : 287 - 297
  • [4] ON ENUMERATION OF MATRICES OVER FINITE COMMUTATIVE RINGS
    BOLLMAN, D
    RAMIREZ, H
    AMERICAN MATHEMATICAL MONTHLY, 1969, 76 (09): : 1019 - &
  • [5] INVOLUTORY MATRICES OVER FINITE COMMUTATIVE RINGS
    BRAWLEY, JV
    GAMBLE, RO
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1978, 21 (02) : 175 - 188
  • [6] Recursive MDS matrices over finite commutative rings
    Kesarwani, Abhishek
    Pandey, Sumit Kumar
    Sarkar, Santanu
    Venkateswarlu, Ayineedi
    DISCRETE APPLIED MATHEMATICS, 2021, 304 : 384 - 396
  • [7] Determinants of Arrowhead Matrices over Finite Commutative Chain Rings
    Jitman, Somphong
    Modjam, Pornrudee
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (01): : 11 - 29
  • [8] Determinants of matrices over commutative finite principal ideal rings
    Choosuwan, Parinyawat
    Jitman, Somphong
    Udomkavanich, Patanee
    FINITE FIELDS AND THEIR APPLICATIONS, 2017, 48 : 126 - 140
  • [9] SIMILARITY OF MATRICES OVER COMMUTATIVE RINGS
    GURALNICK, RM
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 157 : 55 - 68
  • [10] Clean matrices over commutative rings
    Huanyin Chen
    Czechoslovak Mathematical Journal, 2009, 59 : 145 - 158